C - coefficient typepublic class PolyUtilApp<C extends RingElem<C>> extends java.lang.Object
| Constructor and Description |
|---|
PolyUtilApp() |
| Modifier and Type | Method and Description |
|---|---|
static <D extends GcdRingElem<D> & Rational> |
complexAlgebraicRoots(Ideal<D> I)
Construct exact set of complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexAlgebraicRoots(IdealWithUniv<D> I)
Construct complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
Construct complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexAlgebraicRootsWrong(IdealWithUniv<D> I)
Construct complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexRoots(Ideal<D> G,
BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexRoots(Ideal<D> I,
java.util.List<GenPolynomial<D>> univs,
BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexRoots(java.util.List<IdealWithUniv<D>> Il,
BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexRootTuples(Ideal<D> I,
BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
complexRootTuples(java.util.List<IdealWithUniv<D>> Il,
BigRational eps)
Construct superset of complex roots for zero dimensional ideal(G).
|
static <C extends GcdRingElem<C> & Rational> |
convertToComplexRealCoefficients(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac,
GenPolynomial<Complex<C>> A)
Convert to Complex<RealAlgebraicNumber> coefficients.
|
static <C extends GcdRingElem<C>> |
convertToPrimitiveElem(AlgebraicNumberRing<C> cfac,
AlgebraicNumber<C> A,
AlgebraicNumber<C> a)
Convert to primitive element ring.
|
static <C extends GcdRingElem<C>> |
convertToPrimitiveElem(AlgebraicNumberRing<C> cfac,
AlgebraicNumber<C> A,
AlgebraicNumber<C> B,
AlgebraicNumber<AlgebraicNumber<C>> a)
Convert to primitive element ring.
|
static <C extends GcdRingElem<C>> |
convertToPrimitiveElem(AlgebraicNumberRing<C> cfac,
AlgebraicNumber<C> A,
AlgebraicNumber<C> B,
GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a)
Convert to primitive element ring.
|
static <C extends GcdRingElem<C>> |
convertToPrimitiveElem(AlgebraicNumberRing<C> cfac,
AlgebraicNumber<C> A,
GenPolynomial<AlgebraicNumber<C>> a)
Convert coefficients to primitive element ring.
|
static <C extends GcdRingElem<C> & Rational> |
evaluateToComplexRealCoefficients(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac,
GenPolynomial<GenPolynomial<Complex<C>>> A,
Complex<RealAlgebraicNumber<C>> r)
Evaluate to Complex<RealAlgebraicNumber> coefficients.
|
static <C extends GcdRingElem<C>> |
fromProduct(GenPolynomialRing<GenPolynomial<C>> pfac,
GenPolynomial<Product<Residue<C>>> P,
int i)
From product representation.
|
static <C extends GcdRingElem<C>> |
fromProduct(GenPolynomialRing<GenPolynomial<C>> pfac,
java.util.List<GenPolynomial<Product<Residue<C>>>> L,
int i)
From product representation.
|
static boolean |
isComplexRoots(java.util.List<GenPolynomial<Complex<BigDecimal>>> L,
java.util.List<java.util.List<Complex<BigDecimal>>> roots,
BigDecimal eps)
Test for complex roots of zero dimensional ideal(L).
|
static boolean |
isRealRoots(java.util.List<GenPolynomial<BigDecimal>> L,
java.util.List<java.util.List<BigDecimal>> roots,
BigDecimal eps)
Test for real roots of zero dimensional ideal(L).
|
static <C extends GcdRingElem<C>> |
primitiveElement(AlgebraicNumberRing<AlgebraicNumber<C>> b)
Construct primitive element for double field extension.
|
static <C extends GcdRingElem<C>> |
primitiveElement(AlgebraicNumberRing<C> a,
AlgebraicNumberRing<C> b)
Construct primitive element for double field extension.
|
static <C extends GcdRingElem<C>> |
productSlice(PolynomialList<Product<Residue<C>>> L)
Product slice.
|
static <C extends GcdRingElem<C>> |
productSlice(PolynomialList<Product<Residue<C>>> L,
int i)
Product slice at i.
|
static <C extends GcdRingElem<C>> |
productSliceToString(java.util.Map<Ideal<C>,PolynomialList<GenPolynomial<C>>> L)
Product slice to String.
|
static <C extends GcdRingElem<C>> |
productToString(PolynomialList<Product<Residue<C>>> L)
Product slice to String.
|
static <D extends GcdRingElem<D> & Rational> |
realAlgebraicRoots(Ideal<D> I)
Construct exact set of real roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
realAlgebraicRoots(IdealWithUniv<D> I)
Construct real roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
realAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
Construct real roots for zero dimensional ideal(G).
|
static <C extends GcdRingElem<C> & Rational> |
realAlgFromRealCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> afac,
GenPolynomial<RealAlgebraicNumber<C>> A)
Convert to RealAlgebraicNumber coefficients.
|
static <C extends GcdRingElem<C> & Rational> |
realFromRealAlgCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> rfac,
GenPolynomial<RealAlgebraicNumber<C>> A)
Convert to RealAlgebraicNumber coefficients.
|
static <D extends GcdRingElem<D> & Rational> |
realRoots(Ideal<D> G,
BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
realRoots(Ideal<D> I,
java.util.List<GenPolynomial<D>> univs,
BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
realRoots(java.util.List<IdealWithUniv<D>> Il,
BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
realRootTuples(Ideal<D> I,
BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).
|
static <D extends GcdRingElem<D> & Rational> |
realRootTuples(java.util.List<IdealWithUniv<D>> Il,
BigRational eps)
Construct superset of real roots for zero dimensional ideal(G).
|
static <C extends GcdRingElem<C>> |
toProductRes(GenPolynomialRing<Product<Residue<C>>> pfac,
GenPolynomial<GenPolynomial<C>> A)
Product representation.
|
static <C extends GcdRingElem<C>> |
toProductRes(GenPolynomialRing<Product<Residue<C>>> pfac,
java.util.List<GenPolynomial<GenPolynomial<C>>> L)
Product representation.
|
static <C extends GcdRingElem<C>> |
toProductRes(java.util.List<ColoredSystem<C>> CS)
Product residue representation.
|
static <C extends GcdRingElem<C>> |
toProductRes(ProductRing<Residue<C>> pfac,
GenPolynomial<C> c)
Product representation.
|
static <C extends GcdRingElem<C>> |
toResidue(GenPolynomialRing<Residue<C>> pfac,
GenPolynomial<GenPolynomial<C>> A)
Residue coefficient representation.
|
static <C extends GcdRingElem<C>> |
toResidue(GenPolynomialRing<Residue<C>> pfac,
java.util.List<GenPolynomial<GenPolynomial<C>>> L)
Residue coefficient representation.
|
static <D extends GcdRingElem<D> & Rational> |
toString(Complex<RealAlgebraicNumber<D>> c)
String representation of a deximal approximation of a complex number.
|
static <D extends GcdRingElem<D> & Rational> |
toString1(Complex<D> c)
String representation of a deximal approximation of a complex number.
|
public PolyUtilApp()
public static <C extends GcdRingElem<C>> java.util.List<GenPolynomial<Product<Residue<C>>>> toProductRes(GenPolynomialRing<Product<Residue<C>>> pfac, java.util.List<GenPolynomial<GenPolynomial<C>>> L)
C - coefficient type.pfac - polynomial ring factory.L - list of polynomials to be represented.public static <C extends GcdRingElem<C>> GenPolynomial<Product<Residue<C>>> toProductRes(GenPolynomialRing<Product<Residue<C>>> pfac, GenPolynomial<GenPolynomial<C>> A)
C - coefficient type.pfac - polynomial ring factory.A - polynomial to be represented.public static <C extends GcdRingElem<C>> Product<Residue<C>> toProductRes(ProductRing<Residue<C>> pfac, GenPolynomial<C> c)
C - coefficient type.pfac - product ring factory.c - coefficient to be represented.public static <C extends GcdRingElem<C>> java.util.List<GenPolynomial<Product<Residue<C>>>> toProductRes(java.util.List<ColoredSystem<C>> CS)
C - coefficient type.CS - list of ColoredSystems from comprehensive GB system.public static <C extends GcdRingElem<C>> java.util.List<GenPolynomial<Residue<C>>> toResidue(GenPolynomialRing<Residue<C>> pfac, java.util.List<GenPolynomial<GenPolynomial<C>>> L)
pfac - polynomial ring factory.L - list of polynomials to be represented.public static <C extends GcdRingElem<C>> GenPolynomial<Residue<C>> toResidue(GenPolynomialRing<Residue<C>> pfac, GenPolynomial<GenPolynomial<C>> A)
pfac - polynomial ring factory.A - polynomial to be represented.public static <C extends GcdRingElem<C>> java.util.Map<Ideal<C>,PolynomialList<GenPolynomial<C>>> productSlice(PolynomialList<Product<Residue<C>>> L)
C - coefficient type.L - list of polynomials with product coefficients.public static <C extends GcdRingElem<C>> PolynomialList<GenPolynomial<C>> productSlice(PolynomialList<Product<Residue<C>>> L, int i)
C - coefficient type.L - list of polynomials with product coeffients.i - index of slice.public static <C extends GcdRingElem<C>> java.util.List<GenPolynomial<GenPolynomial<C>>> fromProduct(GenPolynomialRing<GenPolynomial<C>> pfac, java.util.List<GenPolynomial<Product<Residue<C>>>> L, int i)
C - coefficient type.pfac - polynomial ring factory.L - list of polynomials to be converted from product representation.i - index of product representation to be taken.public static <C extends GcdRingElem<C>> GenPolynomial<GenPolynomial<C>> fromProduct(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i)
C - coefficient type.pfac - polynomial ring factory.P - polynomial to be converted from product representation.i - index of product representation to be taken.public static <C extends GcdRingElem<C>> java.lang.String productSliceToString(java.util.Map<Ideal<C>,PolynomialList<GenPolynomial<C>>> L)
C - coefficient type.L - list of polynomials with to be represented.public static <C extends GcdRingElem<C>> java.lang.String productToString(PolynomialList<Product<Residue<C>>> L)
C - coefficient type.L - list of polynomials with product coefficients.public static <D extends GcdRingElem<D> & Rational> java.util.List<java.util.List<Complex<BigDecimal>>> complexRootTuples(Ideal<D> I, BigRational eps)
I - zero dimensional ideal.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<java.util.List<Complex<BigDecimal>>> complexRoots(Ideal<D> I, java.util.List<GenPolynomial<D>> univs, BigRational eps)
I - zero dimensional ideal.univs - list of univariate polynomials.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<java.util.List<Complex<BigDecimal>>> complexRootTuples(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Il - list of zero dimensional ideals with univariate polynomials.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<edu.jas.application.IdealWithComplexRoots<D>> complexRoots(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Il - list of zero dimensional ideals with univariate polynomials.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<edu.jas.application.IdealWithComplexRoots<D>> complexRoots(Ideal<D> G, BigRational eps)
G - list of polynomials of a of zero dimensional ideal.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<java.util.List<BigDecimal>> realRootTuples(Ideal<D> I, BigRational eps)
I - zero dimensional ideal.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<java.util.List<BigDecimal>> realRoots(Ideal<D> I, java.util.List<GenPolynomial<D>> univs, BigRational eps)
I - zero dimensional ideal.univs - list of univariate polynomials.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<java.util.List<BigDecimal>> realRootTuples(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Il - list of zero dimensional ideals with univariate polynomials.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<IdealWithRealRoots<D>> realRoots(java.util.List<IdealWithUniv<D>> Il, BigRational eps)
Il - list of zero dimensional ideals with univariate polynomials.eps - desired precision.public static <D extends GcdRingElem<D> & Rational> java.util.List<IdealWithRealRoots<D>> realRoots(Ideal<D> G, BigRational eps)
G - list of polynomials of a of zero dimensional ideal.eps - desired precision.public static boolean isRealRoots(java.util.List<GenPolynomial<BigDecimal>> L, java.util.List<java.util.List<BigDecimal>> roots, BigDecimal eps)
L - list of polynomials.roots - list of real roots for ideal(G).eps - desired precision.public static boolean isComplexRoots(java.util.List<GenPolynomial<Complex<BigDecimal>>> L, java.util.List<java.util.List<Complex<BigDecimal>>> roots, BigDecimal eps)
L - list of polynomials.roots - list of real roots for ideal(G).eps - desired precision.public static <D extends GcdRingElem<D> & Rational> IdealWithRealAlgebraicRoots<D> realAlgebraicRoots(IdealWithUniv<D> I)
I - zero dimensional ideal with univariate irreducible polynomials
and bi-variate polynomials.public static <D extends GcdRingElem<D> & Rational> java.util.List<IdealWithRealAlgebraicRoots<D>> realAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
I - list of zero dimensional ideal with univariate irreducible
polynomials and bi-variate polynomials.public static <D extends GcdRingElem<D> & Rational> IdealWithComplexAlgebraicRoots<D> complexAlgebraicRootsWrong(IdealWithUniv<D> I)
I - zero dimensional ideal with univariate irreducible polynomials
and bi-variate polynomials.public static <D extends GcdRingElem<D> & Rational> IdealWithComplexAlgebraicRoots<D> complexAlgebraicRoots(IdealWithUniv<D> I)
I - zero dimensional ideal with univariate irreducible polynomials
and bi-variate polynomials.public static <D extends GcdRingElem<D> & Rational> java.lang.String toString(Complex<RealAlgebraicNumber<D>> c)
c - compelx number.public static <D extends GcdRingElem<D> & Rational> java.lang.String toString1(Complex<D> c)
c - compelx number.public static <D extends GcdRingElem<D> & Rational> java.util.List<IdealWithComplexAlgebraicRoots<D>> complexAlgebraicRoots(java.util.List<IdealWithUniv<D>> I)
I - list of zero dimensional ideal with univariate irreducible
polynomials and bi-variate polynomials.public static <D extends GcdRingElem<D> & Rational> java.util.List<IdealWithComplexAlgebraicRoots<D>> complexAlgebraicRoots(Ideal<D> I)
I - zero dimensional ideal.public static <D extends GcdRingElem<D> & Rational> java.util.List<IdealWithRealAlgebraicRoots<D>> realAlgebraicRoots(Ideal<D> I)
I - zero dimensional ideal.public static <C extends GcdRingElem<C>> PrimitiveElement<C> primitiveElement(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b)
a - algebraic number ring with squarefree monic minimal polynomialb - algebraic number ring with squarefree monic minimal polynomialpublic static <C extends GcdRingElem<C>> AlgebraicNumber<C> convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> a)
cfac - primitive element ring.A - algebraic number representing the generating element of a in the
new ring.a - algebraic number to convert.public static <C extends GcdRingElem<C>> GenPolynomial<AlgebraicNumber<C>> convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a)
cfac - primitive element ring.A - algebraic number representing the generating element of a in the
new ring.a - polynomial with coefficients algebraic number to convert.public static <C extends GcdRingElem<C>> AlgebraicNumber<C> convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumber<AlgebraicNumber<C>> a)
cfac - primitive element ring.A - algebraic number representing the generating element of a in the
new ring.a - recursive algebraic number to convert.public static <C extends GcdRingElem<C>> PrimitiveElement<C> primitiveElement(AlgebraicNumberRing<AlgebraicNumber<C>> b)
b - algebraic number ring with squarefree monic minimal polynomial
over Q(a)public static <C extends GcdRingElem<C>> GenPolynomial<AlgebraicNumber<C>> convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a)
cfac - primitive element ring.A - algebraic number representing the generating element of a in the
new ring.a - polynomial with recursive algebraic number coefficients to
convert.public static <C extends GcdRingElem<C> & Rational> GenPolynomial<RealAlgebraicNumber<C>> realAlgFromRealCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A)
edu.jas.root.afac - result polynomial factory.A - polynomial with RealAlgebraicNumber<C> coefficients to be
converted.public static <C extends GcdRingElem<C> & Rational> GenPolynomial<RealAlgebraicNumber<C>> realFromRealAlgCoefficients(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A)
edu.jas.application.
rfac - result polynomial factory.A - polynomial with RealAlgebraicNumber<C> coefficients to be
converted.public static <C extends GcdRingElem<C> & Rational> GenPolynomial<Complex<RealAlgebraicNumber<C>>> convertToComplexRealCoefficients(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A)
pfac - result polynomial factory.A - polynomial with Complex coefficients to be converted.public static <C extends GcdRingElem<C> & Rational> GenPolynomial<Complex<RealAlgebraicNumber<C>>> evaluateToComplexRealCoefficients(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r)
pfac - result polynomial factory.A - = A(x,Y) a recursive polynomial with
GenPolynomial<Complex> coefficients to be converted.r - Complex<RealAlgebraicNumber> to be evaluated at.