public class RealAlgebraicNumber<C extends GcdRingElem<C> & Rational> extends java.lang.Object implements GcdRingElem<RealAlgebraicNumber<C>>, Rational
| Modifier and Type | Field and Description |
|---|---|
RealAlgebraicNumber<RealAlgebraicNumber<C>> |
number
Representing recursive RealAlgebraicNumber.
|
RealAlgebraicRing<C> |
ring
Ring part of the data structure.
|
| Constructor and Description |
|---|
RealAlgebraicNumber(RealAlgebraicRing<C> r)
The constructor creates a zero RealAlgebraicNumber.
|
RealAlgebraicNumber(RealAlgebraicRing<C> r,
C a)
The constructor creates a RealAlgebraicNumber object from a GenPolynomial
value.
|
RealAlgebraicNumber(RealAlgebraicRing<C> r,
GenPolynomial<C> a)
The constructor creates a RealAlgebraicNumber object from a GenPolynomial
value.
|
RealAlgebraicNumber(RealAlgebraicRing<C> r,
RealAlgebraicNumber<RealAlgebraicNumber<C>> a)
The constructor creates a RealAlgebraicNumber object from a recursive
real algebraic value.
|
| Modifier and Type | Method and Description |
|---|---|
RealAlgebraicNumber<C> |
abs()
RealAlgebraicNumber absolute value.
|
int |
compareTo(RealAlgebraicNumber<C> b)
RealAlgebraicNumber comparison.
|
int |
compareTo(RealAlgebraicNumber<RealAlgebraicNumber<C>> b)
RealAlgebraicNumber comparison.
|
RealAlgebraicNumber<C> |
copy()
Clone this.
|
BigDecimal |
decimalMagnitude()
RealAlgebraicNumber decimal magnitude.
|
RealAlgebraicNumber<C> |
divide(RealAlgebraicNumber<C> S)
RealAlgebraicNumber division.
|
RealAlgebraicNumber<C>[] |
egcd(RealAlgebraicNumber<C> S)
RealAlgebraicNumber extended greatest common divisor.
|
boolean |
equals(java.lang.Object b)
Comparison with any other object.
|
RealAlgebraicRing<C> |
factory()
Get the corresponding element factory.
|
RealAlgebraicNumber<C> |
gcd(RealAlgebraicNumber<C> S)
RealAlgebraicNumber greatest common divisor.
|
BigRational |
getRational()
Return a BigRational approximation of this Element.
|
int |
hashCode()
Hash code for this RealAlgebraicNumber.
|
RealAlgebraicNumber<C> |
inverse()
RealAlgebraicNumber inverse.
|
boolean |
isONE()
Is RealAlgebraicNumber one.
|
boolean |
isRootOfUnity()
Is RealAlgebraicNumber a root of unity.
|
boolean |
isUnit()
Is RealAlgebraicNumber unit.
|
boolean |
isZERO()
Is RealAlgebraicNumber zero.
|
BigRational |
magnitude()
RealAlgebraicNumber magnitude.
|
RealAlgebraicNumber<C> |
monic()
RealAlgebraicNumber monic.
|
RealAlgebraicNumber<C> |
multiply(RealAlgebraicNumber<C> S)
RealAlgebraicNumber multiplication.
|
RealAlgebraicNumber<C> |
multiply(RealAlgebraicNumber<RealAlgebraicNumber<C>> c)
RealAlgebraicNumber multiplication.
|
RealAlgebraicNumber<C> |
negate()
RealAlgebraicNumber negate.
|
RealAlgebraicNumber<C> |
remainder(RealAlgebraicNumber<C> S)
RealAlgebraicNumber remainder.
|
int |
signum()
RealAlgebraicNumber signum.
|
RealAlgebraicNumber<C> |
subtract(RealAlgebraicNumber<C> S)
RealAlgebraicNumber subtraction.
|
RealAlgebraicNumber<C> |
sum(RealAlgebraicNumber<C> S)
RealAlgebraicNumber summation.
|
RealAlgebraicNumber<C> |
sum(RealAlgebraicNumber<RealAlgebraicNumber<C>> c)
RealAlgebraicNumber summation.
|
java.lang.String |
toScript()
Get a scripting compatible string representation.
|
java.lang.String |
toScriptFactory()
Get a scripting compatible string representation of the factory.
|
java.lang.String |
toString()
Get the String representation as RingElem.
|
clone, finalize, getClass, notify, notifyAll, wait, wait, waitleftDivide, leftRemainder, power, quotientRemainder, rightDivide, rightRemainder, twosidedDivide, twosidedRemainderpublic final RealAlgebraicNumber<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>> number
public final RealAlgebraicRing<C extends GcdRingElem<C> & Rational> ring
public RealAlgebraicNumber(RealAlgebraicRing<C> r)
r - ring RealAlgebraicRingpublic RealAlgebraicNumber(RealAlgebraicRing<C> r, C a)
r - ring RealAlgebraicRinga - value element public RealAlgebraicNumber(RealAlgebraicRing<C> r, GenPolynomial<C> a)
r - ring RealAlgebraicRinga - value GenPolynomialpublic RealAlgebraicNumber(RealAlgebraicRing<C> r, RealAlgebraicNumber<RealAlgebraicNumber<C>> a)
r - ring RealAlgebraicRinga - recursive real algebraic number.public RealAlgebraicRing<C> factory()
factory in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>Element.factory()public RealAlgebraicNumber<C> copy()
copy in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>Object.clone()public BigRational getRational()
getRational in interface RationalRational.getRational()public boolean isZERO()
isZERO in interface AbelianGroupElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>AbelianGroupElem.isZERO()public boolean isONE()
isONE in interface MonoidElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>MonoidElem.isONE()public boolean isUnit()
isUnit in interface MonoidElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>MonoidElem.isUnit()public boolean isRootOfUnity()
public java.lang.String toString()
toString in class java.lang.ObjectObject.toString()public java.lang.String toScript()
toScript in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>Element.toScript()public java.lang.String toScriptFactory()
toScriptFactory in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>Element.toScriptFactory()public int compareTo(RealAlgebraicNumber<C> b)
compareTo in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>compareTo in interface java.lang.Comparable<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>b - RealAlgebraicNumber.public int compareTo(RealAlgebraicNumber<RealAlgebraicNumber<C>> b)
b - AlgebraicNumber.public boolean equals(java.lang.Object b)
equals in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>equals in class java.lang.ObjectObject.equals(java.lang.Object)public int hashCode()
hashCode in interface Element<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>hashCode in class java.lang.ObjectObject.hashCode()public RealAlgebraicNumber<C> abs()
abs in interface AbelianGroupElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>AbelianGroupElem.abs()public RealAlgebraicNumber<C> sum(RealAlgebraicNumber<C> S)
sum in interface AbelianGroupElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public RealAlgebraicNumber<C> sum(RealAlgebraicNumber<RealAlgebraicNumber<C>> c)
c - recursive real algebraic number.public RealAlgebraicNumber<C> negate()
negate in interface AbelianGroupElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>AbelianGroupElem.negate()public RealAlgebraicNumber<C> subtract(RealAlgebraicNumber<C> S)
subtract in interface AbelianGroupElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public RealAlgebraicNumber<C> divide(RealAlgebraicNumber<C> S)
divide in interface MonoidElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public RealAlgebraicNumber<C> inverse()
inverse in interface MonoidElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>NotInvertibleException - if the element is not invertible.MonoidElem.inverse()public RealAlgebraicNumber<C> remainder(RealAlgebraicNumber<C> S)
remainder in interface MonoidElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public RealAlgebraicNumber<C> multiply(RealAlgebraicNumber<C> S)
multiply in interface MonoidElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public RealAlgebraicNumber<C> multiply(RealAlgebraicNumber<RealAlgebraicNumber<C>> c)
c - recursive real algebraic number.public RealAlgebraicNumber<C> monic()
public RealAlgebraicNumber<C> gcd(RealAlgebraicNumber<C> S)
gcd in interface RingElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public RealAlgebraicNumber<C>[] egcd(RealAlgebraicNumber<C> S)
egcd in interface RingElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>S - RealAlgebraicNumber.public int signum()
signum in interface AbelianGroupElem<RealAlgebraicNumber<C extends GcdRingElem<C> & Rational>>AbelianGroupElem.signum()public BigRational magnitude()
public BigDecimal decimalMagnitude()