public class AlgebraicNumber<C extends RingElem<C>> extends java.lang.Object implements GcdRingElem<AlgebraicNumber<C>>
Modifier and Type | Field and Description |
---|---|
protected int |
isunit
Flag to remember if this algebraic number is a unit. -1 is unknown, 1 is
unit, 0 not a unit.
|
AlgebraicNumberRing<C> |
ring
Ring part of the data structure.
|
GenPolynomial<C> |
val
Value part of the element data structure.
|
Constructor and Description |
---|
AlgebraicNumber(AlgebraicNumberRing<C> r)
The constructor creates a AlgebraicNumber object from a GenPolynomial
object module.
|
AlgebraicNumber(AlgebraicNumberRing<C> r,
GenPolynomial<C> a)
The constructor creates a AlgebraicNumber object from AlgebraicNumberRing
modul and a GenPolynomial value.
|
Modifier and Type | Method and Description |
---|---|
AlgebraicNumber<C> |
abs()
AlgebraicNumber absolute value.
|
int |
compareTo(AlgebraicNumber<C> b)
AlgebraicNumber comparison.
|
AlgebraicNumber<C> |
copy()
Copy this.
|
AlgebraicNumber<C> |
divide(AlgebraicNumber<C> S)
AlgebraicNumber division.
|
AlgebraicNumber<C>[] |
egcd(AlgebraicNumber<C> S)
AlgebraicNumber extended greatest common divisor.
|
boolean |
equals(java.lang.Object b)
Comparison with any other object.
|
AlgebraicNumberRing<C> |
factory()
Get the corresponding element factory.
|
AlgebraicNumber<C> |
gcd(AlgebraicNumber<C> S)
AlgebraicNumber greatest common divisor.
|
GenPolynomial<C> |
getVal()
Get the value part.
|
int |
hashCode()
Hash code for this AlgebraicNumber.
|
AlgebraicNumber<C> |
inverse()
AlgebraicNumber inverse.
|
boolean |
isONE()
Is AlgebraicNumber one.
|
boolean |
isRootOfUnity()
Is AlgebraicNumber a root of unity.
|
boolean |
isUnit()
Is AlgebraicNumber unit.
|
boolean |
isZERO()
Is AlgebraicNumber zero.
|
AlgebraicNumber<C> |
monic()
AlgebraicNumber monic.
|
AlgebraicNumber<C> |
multiply(AlgebraicNumber<C> S)
AlgebraicNumber multiplication.
|
AlgebraicNumber<C> |
multiply(C c)
AlgebraicNumber multiplication.
|
AlgebraicNumber<C> |
multiply(GenPolynomial<C> c)
AlgebraicNumber multiplication.
|
AlgebraicNumber<C> |
negate()
AlgebraicNumber negate.
|
AlgebraicNumber<C>[] |
quotientRemainder(AlgebraicNumber<C> S)
Quotient and remainder by division of this by S.
|
AlgebraicNumber<C> |
remainder(AlgebraicNumber<C> S)
AlgebraicNumber remainder.
|
int |
signum()
AlgebraicNumber signum.
|
AlgebraicNumber<C> |
subtract(AlgebraicNumber<C> S)
AlgebraicNumber subtraction.
|
AlgebraicNumber<C> |
sum(AlgebraicNumber<C> S)
AlgebraicNumber summation.
|
AlgebraicNumber<C> |
sum(C c)
AlgebraicNumber summation.
|
AlgebraicNumber<C> |
sum(GenPolynomial<C> c)
AlgebraicNumber summation.
|
java.lang.String |
toScript()
Get a scripting compatible string representation.
|
java.lang.String |
toScriptFactory()
Get a scripting compatible string representation of the factory.
|
java.lang.String |
toString()
Get the String representation as RingElem.
|
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
leftDivide, leftRemainder, power, rightDivide, rightRemainder, twosidedDivide, twosidedRemainder
public final AlgebraicNumberRing<C extends RingElem<C>> ring
public final GenPolynomial<C extends RingElem<C>> val
protected int isunit
public AlgebraicNumber(AlgebraicNumberRing<C> r, GenPolynomial<C> a)
r
- ring AlgebraicNumberRinga
- value GenPolynomialpublic AlgebraicNumber(AlgebraicNumberRing<C> r)
r
- ring AlgebraicNumberRingpublic GenPolynomial<C> getVal()
public AlgebraicNumberRing<C> factory()
factory
in interface Element<AlgebraicNumber<C extends RingElem<C>>>
Element.factory()
public AlgebraicNumber<C> copy()
copy
in interface Element<AlgebraicNumber<C extends RingElem<C>>>
Element.copy()
public boolean isZERO()
isZERO
in interface AbelianGroupElem<AlgebraicNumber<C extends RingElem<C>>>
AbelianGroupElem.isZERO()
public boolean isONE()
isONE
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
MonoidElem.isONE()
public boolean isUnit()
isUnit
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
MonoidElem.isUnit()
public boolean isRootOfUnity()
public java.lang.String toString()
toString
in class java.lang.Object
Object.toString()
public java.lang.String toScript()
toScript
in interface Element<AlgebraicNumber<C extends RingElem<C>>>
Element.toScript()
public java.lang.String toScriptFactory()
toScriptFactory
in interface Element<AlgebraicNumber<C extends RingElem<C>>>
Element.toScriptFactory()
public int compareTo(AlgebraicNumber<C> b)
compareTo
in interface Element<AlgebraicNumber<C extends RingElem<C>>>
compareTo
in interface java.lang.Comparable<AlgebraicNumber<C extends RingElem<C>>>
b
- AlgebraicNumber.public boolean equals(java.lang.Object b)
public int hashCode()
public AlgebraicNumber<C> abs()
abs
in interface AbelianGroupElem<AlgebraicNumber<C extends RingElem<C>>>
AbelianGroupElem.abs()
public AlgebraicNumber<C> sum(AlgebraicNumber<C> S)
sum
in interface AbelianGroupElem<AlgebraicNumber<C extends RingElem<C>>>
S
- AlgebraicNumber.public AlgebraicNumber<C> sum(GenPolynomial<C> c)
c
- coefficient.public AlgebraicNumber<C> sum(C c)
c
- polynomial.public AlgebraicNumber<C> negate()
negate
in interface AbelianGroupElem<AlgebraicNumber<C extends RingElem<C>>>
AbelianGroupElem.negate()
public int signum()
signum
in interface AbelianGroupElem<AlgebraicNumber<C extends RingElem<C>>>
AbelianGroupElem.signum()
public AlgebraicNumber<C> subtract(AlgebraicNumber<C> S)
subtract
in interface AbelianGroupElem<AlgebraicNumber<C extends RingElem<C>>>
S
- AlgebraicNumber.public AlgebraicNumber<C> divide(AlgebraicNumber<C> S)
divide
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
S
- AlgebraicNumber.public AlgebraicNumber<C> inverse()
inverse
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
NotInvertibleException
- if the element is not invertible.MonoidElem.inverse()
public AlgebraicNumber<C> remainder(AlgebraicNumber<C> S)
remainder
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
S
- AlgebraicNumber.public AlgebraicNumber<C>[] quotientRemainder(AlgebraicNumber<C> S)
quotientRemainder
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
S
- a AlgebraicNumberpublic AlgebraicNumber<C> multiply(AlgebraicNumber<C> S)
multiply
in interface MonoidElem<AlgebraicNumber<C extends RingElem<C>>>
S
- AlgebraicNumber.public AlgebraicNumber<C> multiply(C c)
c
- coefficient.public AlgebraicNumber<C> multiply(GenPolynomial<C> c)
c
- polynomial.public AlgebraicNumber<C> monic()
public AlgebraicNumber<C> gcd(AlgebraicNumber<C> S)
public AlgebraicNumber<C>[] egcd(AlgebraicNumber<C> S)