C
- coefficient typepublic class ElementaryIntegration<C extends GcdRingElem<C>> extends java.lang.Object
Modifier and Type | Field and Description |
---|---|
FactorAbstract<C> |
irr
Engine for factorization.
|
boolean |
irredLogPart
Flag for irreducible input to integrateLogPart.
|
SquarefreeAbstract<C> |
sqf
Engine for squarefree decomposition.
|
GreatestCommonDivisorAbstract<C> |
ufd
Engine for greatest common divisors.
|
Constructor and Description |
---|
ElementaryIntegration(RingFactory<C> br)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Quotient<C> |
deriviative(Quotient<C> r)
Derivation of a univariate rational function.
|
Integral<C> |
integrate(GenPolynomial<C> a,
GenPolynomial<C> d)
Integration of a rational function.
|
QuotIntegral<C> |
integrate(Quotient<C> r)
Integration of a rational function.
|
java.util.List<GenPolynomial<C>>[] |
integrateHermite(GenPolynomial<C> a,
GenPolynomial<C> d)
Integration of the rational part, Hermite reduction step.
|
LogIntegral<C> |
integrateLogPart(GenPolynomial<C> A,
GenPolynomial<C> P)
Univariate GenPolynomial integration of the logaritmic part,
Rothstein-Trager algorithm.
|
LogIntegral<C> |
integrateLogPartPrepare(GenPolynomial<C> A,
GenPolynomial<C> P)
Univariate GenPolynomial integration of the logaritmic part, eventual
preparation for irreducible factorization of P.
|
boolean |
isIntegral(LogIntegral<C> rl)
Test of integration of the logarithmic part of a rational function.
|
boolean |
isIntegral(QuotIntegral<C> ri)
Test of integration of a rational function.
|
public final FactorAbstract<C extends GcdRingElem<C>> irr
public final SquarefreeAbstract<C extends GcdRingElem<C>> sqf
public final GreatestCommonDivisorAbstract<C extends GcdRingElem<C>> ufd
public boolean irredLogPart
public ElementaryIntegration(RingFactory<C> br)
public QuotIntegral<C> integrate(Quotient<C> r)
r
- rational functionpublic Integral<C> integrate(GenPolynomial<C> a, GenPolynomial<C> d)
a
- numeratord
- denominatorpublic java.util.List<GenPolynomial<C>>[] integrateHermite(GenPolynomial<C> a, GenPolynomial<C> d)
a
- numeratord
- denominator, gcd(a,d) == 1public LogIntegral<C> integrateLogPartPrepare(GenPolynomial<C> A, GenPolynomial<C> P)
A
- univariate GenPolynomial, deg(A) < deg(P).P
- univariate squarefree GenPolynomial, gcd(A,P) == 1.public LogIntegral<C> integrateLogPart(GenPolynomial<C> A, GenPolynomial<C> P)
A
- univariate GenPolynomial, deg(A) < deg(P).P
- univariate squarefree or irreducible GenPolynomial. // gcd(A,P)
== 1 automaticpublic Quotient<C> deriviative(Quotient<C> r)
r
- rational functionpublic boolean isIntegral(QuotIntegral<C> ri)
ri
- integralpublic boolean isIntegral(LogIntegral<C> rl)
rl
- logarithmic part of an integral