001/* 002 * $Id: ElementaryIntegration.java 5999 2020-03-17 15:44:50Z kredel $ 003 */ 004 005package edu.jas.integrate; 006 007 008import java.util.ArrayList; 009import java.util.List; 010import java.util.SortedMap; 011 012import org.apache.logging.log4j.LogManager; 013import org.apache.logging.log4j.Logger; 014 015import edu.jas.poly.AlgebraicNumber; 016import edu.jas.poly.AlgebraicNumberRing; 017import edu.jas.poly.GenPolynomial; 018import edu.jas.poly.GenPolynomialRing; 019import edu.jas.poly.PolyUtil; 020import edu.jas.structure.GcdRingElem; 021import edu.jas.structure.RingFactory; 022import edu.jas.ufd.FactorAbstract; 023import edu.jas.ufd.FactorFactory; 024import edu.jas.ufd.GCDFactory; 025import edu.jas.ufd.GreatestCommonDivisorAbstract; 026import edu.jas.ufd.GreatestCommonDivisorSubres; 027import edu.jas.ufd.PolyUfdUtil; 028import edu.jas.ufd.Quotient; 029import edu.jas.ufd.QuotientRing; 030import edu.jas.ufd.SquarefreeAbstract; 031import edu.jas.ufd.SquarefreeFactory; 032 033 034/** 035 * Methods related to elementary integration. In particular there are methods 036 * for Hermite reduction and Rothstein-Trager integration of the logarithmic 037 * part. 038 * 039 * @author Axel Kramer 040 * @author Heinz Kredel 041 * @param <C> coefficient type 042 */ 043 044public class ElementaryIntegration<C extends GcdRingElem<C>> { 045 046 047 private static final Logger logger = LogManager.getLogger(ElementaryIntegration.class); 048 049 050 private static final boolean debug = logger.isDebugEnabled(); 051 052 053 /** 054 * Engine for factorization. 055 */ 056 public final FactorAbstract<C> irr; 057 058 059 /** 060 * Engine for squarefree decomposition. 061 */ 062 public final SquarefreeAbstract<C> sqf; 063 064 065 /** 066 * Engine for greatest common divisors. 067 */ 068 public final GreatestCommonDivisorAbstract<C> ufd; 069 070 071 /** 072 * Flag for irreducible input to integrateLogPart. 073 */ 074 public boolean irredLogPart = true; 075 076 077 /** 078 * Constructor. 079 */ 080 public ElementaryIntegration(RingFactory<C> br) { 081 ufd = GCDFactory.<C> getProxy(br); 082 sqf = SquarefreeFactory.<C> getImplementation(br); 083 irr = /*(FactorAbsolute<C>)*/FactorFactory.<C> getImplementation(br); 084 irredLogPart = true; 085 } 086 087 088 /** 089 * Integration of a rational function. 090 * @param r rational function 091 * @return Integral container, such that integrate(r) = sum_i(g_i) + sum_j( 092 * an_j log(hd_j) ) 093 */ 094 public QuotIntegral<C> integrate(Quotient<C> r) { 095 Integral<C> integral = integrate(r.num, r.den); 096 return new QuotIntegral<C>(r.ring, integral); 097 } 098 099 100 /** 101 * Integration of a rational function. 102 * @param a numerator 103 * @param d denominator 104 * @return Integral container, such that integrate(a/d) = sum_i(gn_i/gd_i) + 105 * integrate(h0) + sum_j( an_j log(hd_j) ) 106 */ 107 public Integral<C> integrate(GenPolynomial<C> a, GenPolynomial<C> d) { 108 if (d == null || a == null || d.isZERO()) { 109 throw new IllegalArgumentException("zero or null not allowed"); 110 } 111 if (a.isZERO()) { 112 return new Integral<C>(a, d, a); 113 } 114 if (d.isONE()) { 115 GenPolynomial<C> pi = PolyUtil.<C> baseIntegral(a); 116 return new Integral<C>(a, d, pi); 117 } 118 GenPolynomialRing<C> pfac = d.ring; 119 if (pfac.nvar > 1) { 120 throw new IllegalArgumentException("only for univariate polynomials " + pfac); 121 } 122 if (!pfac.coFac.isField()) { 123 throw new IllegalArgumentException("only for field coefficients " + pfac); 124 } 125 126 GenPolynomial<C>[] qr = PolyUtil.<C> basePseudoQuotientRemainder(a, d); 127 GenPolynomial<C> p = qr[0]; 128 GenPolynomial<C> r = qr[1]; 129 130 GenPolynomial<C> c = ufd.gcd(r, d); 131 if (!c.isONE()) { 132 r = PolyUtil.<C> basePseudoQuotientRemainder(r, c)[0]; 133 d = PolyUtil.<C> basePseudoQuotientRemainder(d, c)[0]; 134 } 135 List<GenPolynomial<C>>[] ih = integrateHermite(r, d); 136 List<GenPolynomial<C>> rat = ih[0]; 137 List<GenPolynomial<C>> log = ih[1]; 138 139 GenPolynomial<C> pp = log.remove(0); 140 p = p.sum(pp); 141 GenPolynomial<C> pi = PolyUtil.<C> baseIntegral(p); 142 143 if (debug) { 144 logger.debug("pi = " + pi); 145 logger.debug("rat = " + rat); 146 logger.debug("log = " + log); 147 } 148 if (log.size() == 0) { 149 return new Integral<C>(a, d, pi, rat); 150 } 151 152 List<LogIntegral<C>> logi = new ArrayList<LogIntegral<C>>(log.size() / 2); 153 for (int i = 0; i < log.size(); i++) { 154 GenPolynomial<C> ln = log.get(i++); 155 GenPolynomial<C> ld = log.get(i); 156 LogIntegral<C> pf = integrateLogPartPrepare(ln, ld); 157 logi.add(pf); 158 } 159 if (debug) { 160 logger.debug("logi = " + logi); 161 } 162 return new Integral<C>(a, d, pi, rat, logi); 163 } 164 165 166 /** 167 * Integration of the rational part, Hermite reduction step. 168 * @param a numerator 169 * @param d denominator, gcd(a,d) == 1 170 * @return [ [ gn_i, gd_i ], [ h0, hn_j, hd_j ] ] such that integrate(a/d) = 171 * sum_i(gn_i/gd_i) + integrate(h0) + sum_j( integrate(hn_j/hd_j) ) 172 */ 173 @SuppressWarnings({ "unchecked", "cast" }) 174 public List<GenPolynomial<C>>[] integrateHermite(GenPolynomial<C> a, GenPolynomial<C> d) { 175 if (d == null || d.isZERO()) { 176 throw new IllegalArgumentException("d == null or d == 0"); 177 } 178 if (a == null || a.isZERO()) { 179 throw new IllegalArgumentException("a == null or a == 0"); 180 } 181 182 // get squarefree decomposition 183 SortedMap<GenPolynomial<C>, Long> sfactors = sqf.squarefreeFactors(d); 184 185 List<GenPolynomial<C>> D = new ArrayList<GenPolynomial<C>>(sfactors.keySet()); 186 List<GenPolynomial<C>> DP = new ArrayList<GenPolynomial<C>>(); 187 for (GenPolynomial<C> f : D) { 188 long e = sfactors.get(f); 189 GenPolynomial<C> dp = f.power(e); //Power.<GenPolynomial<C>> positivePower(f, e); 190 DP.add(dp); 191 } 192 //System.out.println("D: " + D); 193 //System.out.println("DP: " + DP); 194 195 // get partial fraction decompostion 196 List<GenPolynomial<C>> Ai = ufd.basePartialFraction(a, DP); 197 //System.out.println("Ai: " + Ai); 198 199 List<GenPolynomial<C>> G = new ArrayList<GenPolynomial<C>>(); 200 List<GenPolynomial<C>> H = new ArrayList<GenPolynomial<C>>(); 201 H.add(Ai.remove(0)); // P 202 203 GenPolynomialRing<C> fac = d.ring; 204 int i = 0; 205 for (GenPolynomial<C> v : D) { 206 //System.out.println("V:" + v.toString()); 207 GenPolynomial<C> Ak = Ai.get(i++); 208 //System.out.println("Ak: " + Ak.toString()); 209 int k = sfactors.get(v).intValue(); // assert low power 210 for (int j = k - 1; j >= 1; j--) { 211 //System.out.println("Step(" + k + "," + j + ")"); 212 GenPolynomial<C> DV_dx = PolyUtil.<C> baseDeriviative(v); 213 GenPolynomial<C> Aik = Ak.divide(fac.fromInteger(-j)); 214 GenPolynomial<C>[] BC = ufd.baseGcdDiophant(DV_dx, v, Aik); 215 GenPolynomial<C> b = BC[0]; 216 GenPolynomial<C> c = BC[1]; 217 GenPolynomial<C> vj = v.power(j); 218 G.add(b); // B 219 G.add(vj); // v^j 220 Ak = fac.fromInteger(-j).multiply(c).subtract(PolyUtil.<C> baseDeriviative(b)); 221 //System.out.println("B: " + b.toString()); 222 //System.out.println("C: " + c.toString()); 223 } 224 //System.out.println("V:" + v.toString()); 225 //System.out.println("Ak: " + Ak.toString()); 226 if (!Ak.isZERO()) { 227 H.add(Ak); // A_k 228 H.add(v); // v 229 } 230 } 231 List<GenPolynomial<C>>[] ret = (List<GenPolynomial<C>>[]) new List[2]; 232 ret[0] = G; 233 ret[1] = H; 234 return ret; 235 } 236 237 238 /** 239 * Univariate GenPolynomial integration of the logaritmic part, eventual 240 * preparation for irreducible factorization of P. 241 * @param A univariate GenPolynomial, deg(A) < deg(P). 242 * @param P univariate squarefree GenPolynomial, gcd(A,P) == 1. 243 * @return logarithmic part container. 244 */ 245 public LogIntegral<C> integrateLogPartPrepare(GenPolynomial<C> A, GenPolynomial<C> P) { 246 if (!irredLogPart) { 247 return integrateLogPart(A, P); 248 } 249 if (P == null || P.isZERO()) { 250 throw new IllegalArgumentException(" P == null or P == 0"); 251 } 252 if (A == null || A.isZERO()) { 253 throw new IllegalArgumentException(" A == null or A == 0"); 254 } 255 //System.out.println("\nP_base_algeb_part = " + P); 256 GenPolynomialRing<C> pfac = P.ring; // K[x] 257 if (pfac.nvar > 1) { 258 throw new IllegalArgumentException("only for univariate polynomials " + pfac); 259 } 260 if (!pfac.coFac.isField()) { 261 throw new IllegalArgumentException("only for field coefficients " + pfac); 262 } 263 List<C> cfactors = new ArrayList<C>(); 264 List<GenPolynomial<C>> cdenom = new ArrayList<GenPolynomial<C>>(); 265 List<AlgebraicNumber<C>> afactors = new ArrayList<AlgebraicNumber<C>>(); 266 List<GenPolynomial<AlgebraicNumber<C>>> adenom = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); 267 268 // P linear 269 if (P.degree(0) <= 1) { 270 cfactors.add(A.leadingBaseCoefficient()); 271 cdenom.add(P); 272 return new LogIntegral<C>(A, P, cfactors, cdenom, afactors, adenom); 273 } 274 List<GenPolynomial<C>> Pfac = irr.baseFactorsSquarefree(P); 275 //System.out.println("\nPfac = " + Pfac); 276 277 List<GenPolynomial<C>> Afac = ufd.basePartialFraction(A, Pfac); 278 279 GenPolynomial<C> A0 = Afac.remove(0); 280 if (!A0.isZERO()) { 281 throw new RuntimeException(" A0 != 0: deg(A)>= deg(P)"); 282 } 283 284 // algebraic and linear factors 285 int i = 0; 286 for (GenPolynomial<C> pi : Pfac) { 287 GenPolynomial<C> ai = Afac.get(i++); 288 if (pi.degree(0) <= 1) { 289 cfactors.add(ai.leadingBaseCoefficient()); 290 cdenom.add(pi); 291 continue; 292 } 293 LogIntegral<C> pf = integrateLogPart(ai, pi); 294 cfactors.addAll(pf.cfactors); 295 cdenom.addAll(pf.cdenom); 296 afactors.addAll(pf.afactors); 297 adenom.addAll(pf.adenom); 298 } 299 return new LogIntegral<C>(A, P, cfactors, cdenom, afactors, adenom); 300 } 301 302 303 /** 304 * Univariate GenPolynomial integration of the logaritmic part, 305 * Rothstein-Trager algorithm. 306 * @param A univariate GenPolynomial, deg(A) < deg(P). 307 * @param P univariate squarefree or irreducible GenPolynomial. // gcd(A,P) 308 * == 1 automatic 309 * @return logarithmic part container. 310 */ 311 public LogIntegral<C> integrateLogPart(GenPolynomial<C> A, GenPolynomial<C> P) { 312 if (P == null || P.isZERO()) { 313 throw new IllegalArgumentException("P == null or P == 0"); 314 } 315 //System.out.println("\nP_base_algeb_part = " + P); 316 GenPolynomialRing<C> pfac = P.ring; // K[x] 317 if (pfac.nvar > 1) { 318 throw new IllegalArgumentException("only for univariate polynomials " + pfac); 319 } 320 if (!pfac.coFac.isField()) { 321 throw new IllegalArgumentException("only for field coefficients " + pfac); 322 } 323 List<C> cfactors = new ArrayList<C>(); 324 List<GenPolynomial<C>> cdenom = new ArrayList<GenPolynomial<C>>(); 325 List<AlgebraicNumber<C>> afactors = new ArrayList<AlgebraicNumber<C>>(); 326 List<GenPolynomial<AlgebraicNumber<C>>> adenom = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); 327 328 // P linear 329 if (P.degree(0) <= 1) { 330 cfactors.add(A.leadingBaseCoefficient()); 331 cdenom.add(P); 332 return new LogIntegral<C>(A, P, cfactors, cdenom, afactors, adenom); 333 } 334 335 // deriviative 336 GenPolynomial<C> Pp = PolyUtil.<C> baseDeriviative(P); 337 //no: Pp = Pp.monic(); 338 //System.out.println("\nP = " + P); 339 //System.out.println("Pp = " + Pp); 340 341 // Q[t] 342 String[] vars = new String[] { "t" }; 343 GenPolynomialRing<C> cfac = new GenPolynomialRing<C>(pfac.coFac, 1, pfac.tord, vars); 344 GenPolynomial<C> t = cfac.univariate(0); 345 //System.out.println("t = " + t); 346 347 // Q[x][t] 348 GenPolynomialRing<GenPolynomial<C>> rfac = new GenPolynomialRing<GenPolynomial<C>>(pfac, cfac); // sic 349 //System.out.println("rfac = " + rfac.toScript()); 350 351 // transform polynomials to bi-variate polynomial 352 GenPolynomial<GenPolynomial<C>> Ac = PolyUfdUtil.<C> introduceLowerVariable(rfac, A); 353 //System.out.println("Ac = " + Ac); 354 GenPolynomial<GenPolynomial<C>> Pc = PolyUfdUtil.<C> introduceLowerVariable(rfac, P); 355 //System.out.println("Pc = " + Pc); 356 GenPolynomial<GenPolynomial<C>> Pcp = PolyUfdUtil.<C> introduceLowerVariable(rfac, Pp); 357 //System.out.println("Pcp = " + Pcp); 358 359 // Q[t][x] 360 GenPolynomialRing<GenPolynomial<C>> rfac1 = Pc.ring; 361 //System.out.println("rfac1 = " + rfac1.toScript()); 362 363 // A - t P' 364 GenPolynomial<GenPolynomial<C>> tc = rfac1.getONE().multiply(t); 365 //System.out.println("tc = " + tc); 366 GenPolynomial<GenPolynomial<C>> At = Ac.subtract(tc.multiply(Pcp)); 367 //System.out.println("At = " + At); 368 369 GreatestCommonDivisorSubres<C> engine = new GreatestCommonDivisorSubres<C>(); 370 // = GCDFactory.<C>getImplementation( cfac.coFac ); 371 GreatestCommonDivisorAbstract<AlgebraicNumber<C>> aengine = null; 372 373 GenPolynomial<GenPolynomial<C>> Rc = engine.recursiveUnivariateResultant(Pc, At); 374 //System.out.println("Rc = " + Rc); 375 GenPolynomial<C> res = Rc.leadingBaseCoefficient(); 376 //no: res = res.monic(); 377 //System.out.println("\nres = " + res); 378 379 SortedMap<GenPolynomial<C>, Long> resfac = irr.baseFactors(res); 380 //System.out.println("resfac = " + resfac + "\n"); 381 382 for (GenPolynomial<C> r : resfac.keySet()) { 383 //System.out.println("\nr(t) = " + r); 384 if (r.isConstant()) { 385 continue; 386 } 387 //vars = new String[] { "z_" + Math.abs(r.hashCode() % 1000) }; 388 vars = pfac.newVars("z_"); 389 pfac = pfac.copy(); 390 @SuppressWarnings("unused") 391 String[] unused = pfac.setVars(vars); 392 r = pfac.copy(r); // hack to exchange the variables 393 //System.out.println("r(z_) = " + r); 394 AlgebraicNumberRing<C> afac = new AlgebraicNumberRing<C>(r, true); // since irreducible 395 logger.debug("afac = " + afac.toScript()); 396 AlgebraicNumber<C> a = afac.getGenerator(); 397 //no: a = a.negate(); 398 //System.out.println("a = " + a); 399 400 // K(alpha)[x] 401 GenPolynomialRing<AlgebraicNumber<C>> pafac = new GenPolynomialRing<AlgebraicNumber<C>>(afac, 402 Pc.ring); 403 //System.out.println("pafac = " + pafac.toScript()); 404 405 // convert to K(alpha)[x] 406 GenPolynomial<AlgebraicNumber<C>> Pa = PolyUtil.<C> convertToAlgebraicCoefficients(pafac, P); 407 //System.out.println("Pa = " + Pa); 408 GenPolynomial<AlgebraicNumber<C>> Pap = PolyUtil.<C> convertToAlgebraicCoefficients(pafac, Pp); 409 //System.out.println("Pap = " + Pap); 410 GenPolynomial<AlgebraicNumber<C>> Aa = PolyUtil.<C> convertToAlgebraicCoefficients(pafac, A); 411 //System.out.println("Aa = " + Aa); 412 413 // A - a P' 414 GenPolynomial<AlgebraicNumber<C>> Ap = Aa.subtract(Pap.multiply(a)); 415 //System.out.println("Ap = " + Ap); 416 417 if (aengine == null) { 418 aengine = GCDFactory.<AlgebraicNumber<C>> getImplementation(afac); 419 } 420 GenPolynomial<AlgebraicNumber<C>> Ga = aengine.baseGcd(Pa, Ap); 421 //System.out.println("Ga = " + Ga); 422 if (Ga.isConstant()) { 423 //System.out.println("warning constant gcd ignored"); 424 continue; 425 } 426 // If a is equal to zero 427 if (a.isZERO()) { 428 continue; 429 } 430 afactors.add(a); 431 adenom.add(Ga); 432 // special quadratic case 433 // todo: eventually implement special cases deg = 3, 4 434 } 435 return new LogIntegral<C>(A, P, cfactors, cdenom, afactors, adenom); 436 } 437 438 439 /** 440 * Derivation of a univariate rational function. 441 * @param r rational function 442 * @return dr/dx 443 */ 444 public Quotient<C> deriviative(Quotient<C> r) { 445 GenPolynomial<C> num = r.num; 446 GenPolynomial<C> den = r.den; 447 GenPolynomial<C> nump = PolyUtil.<C> baseDeriviative(num); 448 if (den.isONE()) { 449 return new Quotient<C>(r.ring, nump, den); 450 } 451 GenPolynomial<C> denp = PolyUtil.<C> baseDeriviative(den); 452 453 GenPolynomial<C> n = den.multiply(nump).subtract(num.multiply(denp)); 454 GenPolynomial<C> d = den.multiply(den); 455 456 Quotient<C> der = new Quotient<C>(r.ring, n, d); 457 return der; 458 } 459 460 461 /** 462 * Test of integration of a rational function. 463 * @param ri integral 464 * @return true, if ri is an integral, else false. 465 */ 466 public boolean isIntegral(QuotIntegral<C> ri) { 467 Quotient<C> r = ri.quot; 468 QuotientRing<C> qr = r.ring; 469 Quotient<C> i = r.ring.getZERO(); 470 for (Quotient<C> q : ri.rational) { 471 Quotient<C> qd = deriviative(q); 472 i = i.sum(qd); 473 } 474 if (ri.logarithm.size() == 0) { 475 return r.equals(i); 476 } 477 for (LogIntegral<C> li : ri.logarithm) { 478 Quotient<C> q = new Quotient<C>(qr, li.num, li.den); 479 i = i.sum(q); 480 } 481 boolean t = r.equals(i); 482 if (!t) { 483 return false; 484 } 485 for (LogIntegral<C> li : ri.logarithm) { 486 t = isIntegral(li); 487 if (!t) { 488 return false; 489 } 490 } 491 return true; 492 } 493 494 495 /** 496 * Test of integration of the logarithmic part of a rational function. 497 * @param rl logarithmic part of an integral 498 * @return true, if rl is an integral, else false. 499 */ 500 public boolean isIntegral(LogIntegral<C> rl) { 501 QuotientRing<C> qr = new QuotientRing<C>(rl.den.ring); 502 Quotient<C> r = new Quotient<C>(qr, rl.num, rl.den); 503 Quotient<C> i = qr.getZERO(); 504 int j = 0; 505 for (GenPolynomial<C> d : rl.cdenom) { 506 GenPolynomial<C> dp = PolyUtil.<C> baseDeriviative(d); 507 dp = dp.multiply(rl.cfactors.get(j++)); 508 Quotient<C> f = new Quotient<C>(qr, dp, d); 509 i = i.sum(f); 510 } 511 if (rl.afactors.size() == 0) { 512 return r.equals(i); 513 } 514 r = r.subtract(i); 515 QuotientRing<AlgebraicNumber<C>> aqr = new QuotientRing<AlgebraicNumber<C>>(rl.adenom.get(0).ring); 516 Quotient<AlgebraicNumber<C>> ai = aqr.getZERO(); 517 518 GenPolynomial<AlgebraicNumber<C>> aqn = PolyUtil.<C> convertToAlgebraicCoefficients(aqr.ring, r.num); 519 GenPolynomial<AlgebraicNumber<C>> aqd = PolyUtil.<C> convertToAlgebraicCoefficients(aqr.ring, r.den); 520 Quotient<AlgebraicNumber<C>> ar = new Quotient<AlgebraicNumber<C>>(aqr, aqn, aqd); 521 j = 0; 522 for (GenPolynomial<AlgebraicNumber<C>> d : rl.adenom) { 523 GenPolynomial<AlgebraicNumber<C>> dp = PolyUtil.<AlgebraicNumber<C>> baseDeriviative(d); 524 dp = dp.multiply(rl.afactors.get(j++)); 525 Quotient<AlgebraicNumber<C>> f = new Quotient<AlgebraicNumber<C>>(aqr, dp, d); 526 ai = ai.sum(f); 527 } 528 boolean t = ar.equals(ai); 529 if (t) { 530 return true; 531 } 532 logger.warn("log integral not verified"); 533 //System.out.println("r = " + r); 534 //System.out.println("afactors = " + rl.afactors); 535 //System.out.println("adenom = " + rl.adenom); 536 //System.out.println("ar = " + ar); 537 //System.out.println("ai = " + ai); 538 return true; 539 } 540 541}