public class PolyGBUtil extends java.lang.Object
Constructor and Description |
---|
PolyGBUtil() |
Modifier and Type | Method and Description |
---|---|
static <C extends RingElem<C>> |
coefficientPseudoRemainder(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P,
GenPolynomial<GenPolynomial<C>> A)
Polynomial leading coefficient pseudo remainder.
|
static <C extends RingElem<C>> |
coefficientPseudoRemainderBase(GenPolynomial<GenPolynomial<C>> P,
GenPolynomial<C> A)
Polynomial leading coefficient pseudo remainder, base case.
|
static <C extends GcdRingElem<C>> |
intersect(GenPolynomialRing<C> pfac,
java.util.List<GenPolynomial<C>> A,
java.util.List<GenPolynomial<C>> B)
Intersection.
|
static <C extends GcdRingElem<C>> |
intersect(GenSolvablePolynomialRing<C> pfac,
java.util.List<GenSolvablePolynomial<C>> A,
java.util.List<GenSolvablePolynomial<C>> B)
Intersection.
|
static <C extends GcdRingElem<C>> |
intersect(GenWordPolynomialRing<C> pfac,
java.util.List<GenWordPolynomial<C>> A,
java.util.List<GenWordPolynomial<C>> B)
Intersection.
|
static <C extends GcdRingElem<C>> |
isResultant(GenPolynomial<C> A,
GenPolynomial<C> B,
GenPolynomial<C> r)
Test for resultant.
|
static <C extends GcdRingElem<C>> |
quotientRemainder(GenSolvablePolynomial<C> n,
GenSolvablePolynomial<C> d)
Solvable quotient and remainder via reduction.
|
static <C extends RingElem<C>> |
topCoefficientPseudoRemainder(java.util.List<GenPolynomial<C>> A,
GenPolynomial<C> P)
Top coefficient pseudo remainder of the leading coefficient of P wrt A in
the main variables.
|
static <C extends RingElem<C>> |
topPseudoRemainder(java.util.List<GenPolynomial<C>> A,
GenPolynomial<C> P)
Top pseudo reduction wrt the main variables.
|
static <C extends RingElem<C>> |
zeroDegrees(java.util.List<GenPolynomial<C>> A)
Extract polynomials with degree zero in the main variable.
|
public PolyGBUtil()
public static <C extends GcdRingElem<C>> boolean isResultant(GenPolynomial<C> A, GenPolynomial<C> B, GenPolynomial<C> r)
A
- generic polynomial.B
- generic polynomial.r
- generic polynomial.public static <C extends RingElem<C>> GenPolynomial<C> topPseudoRemainder(java.util.List<GenPolynomial<C>> A, GenPolynomial<C> P)
P
- generic polynomial.A
- list of generic polynomials sorted according to appearing main
variables.public static <C extends RingElem<C>> GenPolynomial<C> topCoefficientPseudoRemainder(java.util.List<GenPolynomial<C>> A, GenPolynomial<C> P)
P
- generic polynomial in n+1 variables.A
- list of generic polynomials in n variables sorted according to
appearing main variables.public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<GenPolynomial<C>>> coefficientPseudoRemainder(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A)
P
- generic polynomial in n+1 variables.A
- generic polynomial in n variables.public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> coefficientPseudoRemainderBase(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> A)
P
- generic polynomial in 1+1 variables.A
- generic polynomial in 1 variable.public static <C extends RingElem<C>> java.util.List<GenPolynomial<C>> zeroDegrees(java.util.List<GenPolynomial<C>> A)
A
- list of generic polynomials in n variables.public static <C extends GcdRingElem<C>> java.util.List<GenPolynomial<C>> intersect(GenPolynomialRing<C> pfac, java.util.List<GenPolynomial<C>> A, java.util.List<GenPolynomial<C>> B)
pfac
- polynomial ringA
- list of polynomialsB
- list of polynomialspublic static <C extends GcdRingElem<C>> java.util.List<GenSolvablePolynomial<C>> intersect(GenSolvablePolynomialRing<C> pfac, java.util.List<GenSolvablePolynomial<C>> A, java.util.List<GenSolvablePolynomial<C>> B)
pfac
- solvable polynomial ringA
- list of polynomialsB
- list of polynomialspublic static <C extends GcdRingElem<C>> java.util.List<GenWordPolynomial<C>> intersect(GenWordPolynomialRing<C> pfac, java.util.List<GenWordPolynomial<C>> A, java.util.List<GenWordPolynomial<C>> B)
pfac
- word polynomial ringA
- list of word polynomialsB
- list of word polynomialspublic static <C extends GcdRingElem<C>> GenSolvablePolynomial<C>[] quotientRemainder(GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d)
n
- first solvable polynomial.d
- second solvable polynomial.