C
- coefficient typepublic class GenSolvablePolynomial<C extends RingElem<C>> extends GenPolynomial<C>
Modifier and Type | Field and Description |
---|---|
GenSolvablePolynomialRing<C> |
ring
The factory for the solvable polynomial ring.
|
blen, hash, val
Modifier | Constructor and Description |
---|---|
|
GenSolvablePolynomial(GenSolvablePolynomialRing<C> r)
Constructor for zero GenSolvablePolynomial.
|
|
GenSolvablePolynomial(GenSolvablePolynomialRing<C> r,
C c)
Constructor for GenSolvablePolynomial.
|
|
GenSolvablePolynomial(GenSolvablePolynomialRing<C> r,
C c,
ExpVector e)
Constructor for GenSolvablePolynomial.
|
protected |
GenSolvablePolynomial(GenSolvablePolynomialRing<C> r,
java.util.SortedMap<ExpVector,C> v)
Constructor for GenSolvablePolynomial.
|
Modifier and Type | Method and Description |
---|---|
GenSolvablePolynomial<C> |
copy()
Clone this GenSolvablePolynomial.
|
GenSolvablePolynomial<C> |
divide(GenSolvablePolynomial<C> S)
GenSolvablePolynomial left division.
|
boolean |
equals(java.lang.Object B)
Comparison with any other object.
|
GenSolvablePolynomial<C> |
evalAsRightRecursivePolynomial()
Evaluate RecSolvablePolynomial as right coefficients polynomial.
|
GenSolvablePolynomialRing<C> |
factory()
Get the corresponding element factory.
|
boolean |
isRightRecursivePolynomial(GenSolvablePolynomial<C> R)
Test RecSolvablePolynomial right coefficients polynomial.
|
GenSolvablePolynomial<C> |
monic()
GenSolvablePolynomial left monic, i.e. leadingCoefficient == 1.
|
GenSolvablePolynomial<C> |
multiply(C b)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiply(C b,
C c)
GenSolvablePolynomial left and right multiplication.
|
GenSolvablePolynomial<C> |
multiply(C b,
ExpVector e)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiply(C b,
ExpVector e,
C c,
ExpVector f)
GenSolvablePolynomial left and right multiplication.
|
GenSolvablePolynomial<C> |
multiply(ExpVector e)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiply(ExpVector e,
ExpVector f)
GenSolvablePolynomial left and right multiplication.
|
GenSolvablePolynomial<C> |
multiply(GenSolvablePolynomial<C> Bp)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiply(GenSolvablePolynomial<C> S,
GenSolvablePolynomial<C> T)
GenSolvablePolynomial left and right multiplication.
|
GenSolvablePolynomial<C> |
multiply(java.util.Map.Entry<ExpVector,C> m)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiplyLeft(C b)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiplyLeft(C b,
ExpVector e)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiplyLeft(ExpVector e)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C> |
multiplyLeft(java.util.Map.Entry<ExpVector,C> m)
GenSolvablePolynomial multiplication.
|
GenSolvablePolynomial<C>[] |
quotientRemainder(GenSolvablePolynomial<C> S)
GenSolvablePolynomial left division with remainder.
|
GenSolvablePolynomial<C> |
remainder(GenSolvablePolynomial<C> S)
GenSolvablePolynomial remainder by left division.
|
GenSolvablePolynomial<C> |
rightDivide(GenSolvablePolynomial<C> S)
GenSolvablePolynomial right division.
|
GenSolvablePolynomial<C>[] |
rightQuotientRemainder(GenSolvablePolynomial<C> S)
GenSolvablePolynomial right division with remainder.
|
GenSolvablePolynomial<C> |
rightRecursivePolynomial()
RecSolvablePolynomial right coefficients from left coefficients.
|
GenSolvablePolynomial<C> |
rightRemainder(GenSolvablePolynomial<C> S)
GenSolvablePolynomial remainder by right division.
|
GenSolvablePolynomial<C> |
scaleSubtractMultiple(C b,
C a,
ExpVector e,
GenSolvablePolynomial<C> S)
GenSolvablePolynomial scale and subtract a multiple.
|
GenSolvablePolynomial<C> |
scaleSubtractMultiple(C b,
C a,
GenSolvablePolynomial<C> S)
GenSolvablePolynomial scale and subtract a multiple.
|
GenSolvablePolynomial<C> |
scaleSubtractMultiple(C b,
ExpVector g,
C a,
ExpVector e,
GenSolvablePolynomial<C> S)
GenSolvablePolynomial scale and subtract a multiple.
|
GenSolvablePolynomial<C> |
subtractMultiple(C a,
ExpVector e,
GenSolvablePolynomial<C> S)
GenSolvablePolynomial subtract a multiple.
|
GenSolvablePolynomial<C> |
subtractMultiple(C a,
GenSolvablePolynomial<C> S)
GenSolvablePolynomial subtract a multiple.
|
abs, bitLength, coefficient, coefficientIterator, compareTo, contract, contractCoeff, degree, degree, degreeMin, degreeVector, deHomogenize, deltaExpVectors, deltaExpVectors, divide, divide, doAddTo, doAddTo, doAddTo, doPutToMap, doPutToMap, doRemoveFromMap, egcd, exponentIterator, extend, extendLower, extendUnivariate, gcd, getMap, hashCode, hegcd, homogenize, inflate, inverse, isConstant, isHomogeneous, isONE, isUnit, isWeightHomogeneous, isZERO, iterator, leadingBaseCoefficient, leadingExpVector, leadingFacetPolynomial, leadingMonomial, leadingWeightPolynomial, leftDivideCoeff, length, map, mapOnStream, mapOnStream, maxNorm, modInverse, multiply, negate, negateAlt, numberOfVariables, quotientRemainder, reductum, remainder, reverse, rightDivideCoeff, scaleSubtractMultiple, scaleSubtractMultiple, scaleSubtractMultiple, signum, spliterator, subtract, subtract, subtract, subtract, subtractMultiple, subtractMultiple, sum, sum, sum, sum, sumNorm, toScript, toScriptFactory, toString, toString, totalDegree, trailingBaseCoefficient, trailingExpVector, weightDegree
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
leftDivide, leftRemainder, power, rightDivide, rightRemainder, twosidedDivide, twosidedRemainder
public final GenSolvablePolynomialRing<C extends RingElem<C>> ring
public GenSolvablePolynomial(GenSolvablePolynomialRing<C> r)
r
- solvable polynomial ring factory.public GenSolvablePolynomial(GenSolvablePolynomialRing<C> r, C c, ExpVector e)
r
- solvable polynomial ring factory.c
- coefficient.e
- exponent.public GenSolvablePolynomial(GenSolvablePolynomialRing<C> r, C c)
r
- solvable polynomial ring factory.c
- coefficient.protected GenSolvablePolynomial(GenSolvablePolynomialRing<C> r, java.util.SortedMap<ExpVector,C> v)
r
- solvable polynomial ring factory.v
- the SortedMap of some other (solvable) polynomial.public GenSolvablePolynomialRing<C> factory()
factory
in interface Element<GenPolynomial<C extends RingElem<C>>>
factory
in class GenPolynomial<C extends RingElem<C>>
Element.factory()
public GenSolvablePolynomial<C> copy()
public boolean equals(java.lang.Object B)
public GenSolvablePolynomial<C> multiply(GenSolvablePolynomial<C> Bp)
Bp
- GenSolvablePolynomial.public GenSolvablePolynomial<C> multiply(GenSolvablePolynomial<C> S, GenSolvablePolynomial<C> T)
S
- GenSolvablePolynomial.T
- GenSolvablePolynomial.public GenSolvablePolynomial<C> multiply(C b)
multiply
in class GenPolynomial<C extends RingElem<C>>
b
- coefficient.public GenSolvablePolynomial<C> multiply(C b, C c)
b
- coefficient.c
- coefficient.public GenSolvablePolynomial<C> multiply(ExpVector e)
multiply
in class GenPolynomial<C extends RingElem<C>>
e
- exponent.public GenSolvablePolynomial<C> multiply(ExpVector e, ExpVector f)
e
- exponent.f
- exponent.public GenSolvablePolynomial<C> multiply(C b, ExpVector e)
multiply
in class GenPolynomial<C extends RingElem<C>>
b
- coefficient.e
- exponent.public GenSolvablePolynomial<C> multiply(C b, ExpVector e, C c, ExpVector f)
b
- coefficient.e
- exponent.c
- coefficient.f
- exponent.public GenSolvablePolynomial<C> multiplyLeft(C b, ExpVector e)
b
- coefficient.e
- exponent.public GenSolvablePolynomial<C> multiplyLeft(ExpVector e)
e
- exponent.public GenSolvablePolynomial<C> multiplyLeft(C b)
multiplyLeft
in class GenPolynomial<C extends RingElem<C>>
b
- coefficient.public GenSolvablePolynomial<C> multiplyLeft(java.util.Map.Entry<ExpVector,C> m)
m
- 'monomial'.public GenSolvablePolynomial<C> multiply(java.util.Map.Entry<ExpVector,C> m)
multiply
in class GenPolynomial<C extends RingElem<C>>
m
- 'monomial'.public GenSolvablePolynomial<C> subtractMultiple(C a, GenSolvablePolynomial<C> S)
a
- coefficient.S
- GenSolvablePolynomial.public GenSolvablePolynomial<C> subtractMultiple(C a, ExpVector e, GenSolvablePolynomial<C> S)
a
- coefficient.e
- exponent.S
- GenSolvablePolynomial.public GenSolvablePolynomial<C> scaleSubtractMultiple(C b, C a, GenSolvablePolynomial<C> S)
b
- scale factor.a
- coefficient.S
- GenSolvablePolynomial.public GenSolvablePolynomial<C> scaleSubtractMultiple(C b, C a, ExpVector e, GenSolvablePolynomial<C> S)
b
- scale factor.a
- coefficient.e
- exponent.S
- GenSolvablePolynomial.public GenSolvablePolynomial<C> scaleSubtractMultiple(C b, ExpVector g, C a, ExpVector e, GenSolvablePolynomial<C> S)
b
- scale factor.g
- scale exponent.a
- coefficient.e
- exponent.S
- GenSolvablePolynomial.public GenSolvablePolynomial<C> monic()
monic
in class GenPolynomial<C extends RingElem<C>>
public GenSolvablePolynomial<C> divide(GenSolvablePolynomial<C> S)
S
- nonzero GenSolvablePolynomial with invertible leading
coefficient.PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
public GenSolvablePolynomial<C> remainder(GenSolvablePolynomial<C> S)
S
- nonzero GenSolvablePolynomial with invertible leading
coefficient.PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
public GenSolvablePolynomial<C>[] quotientRemainder(GenSolvablePolynomial<C> S)
S
- nonzero GenSolvablePolynomial with invertible leading
coefficient.PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
public GenSolvablePolynomial<C> rightDivide(GenSolvablePolynomial<C> S)
S
- nonzero GenSolvablePolynomial with invertible leading
coefficient.PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
public GenSolvablePolynomial<C> rightRemainder(GenSolvablePolynomial<C> S)
S
- nonzero GenSolvablePolynomial with invertible leading
coefficient.PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
public GenSolvablePolynomial<C>[] rightQuotientRemainder(GenSolvablePolynomial<C> S)
S
- nonzero GenSolvablePolynomial with invertible leading
coefficient.PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
public GenSolvablePolynomial<C> rightRecursivePolynomial()
public GenSolvablePolynomial<C> evalAsRightRecursivePolynomial()
public boolean isRightRecursivePolynomial(GenSolvablePolynomial<C> R)
R
- GenSolvablePolynomial with right coefficients.