C
- coefficient typepublic abstract class ReductionAbstract<C extends RingElem<C>> extends java.lang.Object implements Reduction<C>
Constructor and Description |
---|
ReductionAbstract()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
boolean |
criterion4(ExpVector ei,
ExpVector ej,
ExpVector e)
GB criterium 4.
|
boolean |
criterion4(GenPolynomial<C> A,
GenPolynomial<C> B)
GB criterium 4.
|
boolean |
criterion4(GenPolynomial<C> A,
GenPolynomial<C> B,
ExpVector e)
GB criterium 4.
|
java.util.List<GenPolynomial<C>> |
irreducibleSet(java.util.List<GenPolynomial<C>> Pp)
Irreducible set.
|
boolean |
isNormalform(java.util.List<GenPolynomial<C>> Pp)
Is in Normalform.
|
boolean |
isNormalform(java.util.List<GenPolynomial<C>> Pp,
GenPolynomial<C> Ap)
Is in Normalform.
|
boolean |
isReducible(java.util.List<GenPolynomial<C>> Pp,
GenPolynomial<C> Ap)
Is reducible.
|
boolean |
isReductionNF(java.util.List<GenPolynomial<C>> row,
java.util.List<GenPolynomial<C>> Pp,
GenPolynomial<C> Ap,
GenPolynomial<C> Np)
Is reduction of normal form.
|
boolean |
isTopReducible(java.util.List<GenPolynomial<C>> P,
GenPolynomial<C> A)
Is top reducible.
|
boolean |
moduleCriterion(int modv,
ExpVector ei,
ExpVector ej)
Module criterium.
|
boolean |
moduleCriterion(int modv,
GenPolynomial<C> A,
GenPolynomial<C> B)
Module criterium.
|
java.util.List<GenPolynomial<C>> |
normalform(java.util.List<GenPolynomial<C>> Pp,
java.util.List<GenPolynomial<C>> Ap)
Normalform Set.
|
ModuleList<C> |
normalform(ModuleList<C> Pp,
ModuleList<C> Ap)
Module normalform set.
|
ModuleList<C> |
normalform(ModuleList<C> Pp,
ModuleList<C> Ap,
boolean top)
Module normalform set.
|
GenPolynomial<C> |
normalformMarked(java.util.List<Monomial<C>> Mp,
java.util.List<GenPolynomial<C>> Pp,
GenPolynomial<C> Ap)
Normalform with respect to marked head terms.
|
GenPolynomial<C> |
SPolynomial(GenPolynomial<C> A,
GenPolynomial<C> B)
S-Polynomial.
|
GenPolynomial<C> |
SPolynomial(java.util.List<GenPolynomial<C>> S,
int i,
GenPolynomial<C> A,
int j,
GenPolynomial<C> B)
S-Polynomial with recording.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
normalform, normalform
public ReductionAbstract()
public GenPolynomial<C> SPolynomial(GenPolynomial<C> A, GenPolynomial<C> B)
SPolynomial
in interface Reduction<C extends RingElem<C>>
A
- polynomial.B
- polynomial.public GenPolynomial<C> SPolynomial(java.util.List<GenPolynomial<C>> S, int i, GenPolynomial<C> A, int j, GenPolynomial<C> B)
SPolynomial
in interface Reduction<C extends RingElem<C>>
S
- recording matrix, is modified. Note the negative
S-polynomial is recorded as required by all applications.i
- index of Ap in basis list.A
- a polynomial.j
- index of Bp in basis list.B
- a polynomial.public boolean moduleCriterion(int modv, GenPolynomial<C> A, GenPolynomial<C> B)
moduleCriterion
in interface Reduction<C extends RingElem<C>>
modv
- number of module variables.A
- polynomial.B
- polynomial.public boolean moduleCriterion(int modv, ExpVector ei, ExpVector ej)
moduleCriterion
in interface Reduction<C extends RingElem<C>>
modv
- number of module variables.ei
- ExpVector.ej
- ExpVector.public boolean criterion4(GenPolynomial<C> A, GenPolynomial<C> B, ExpVector e)
criterion4
in interface Reduction<C extends RingElem<C>>
A
- polynomial.B
- polynomial.e
- = lcm(ht(A),ht(B))public boolean criterion4(ExpVector ei, ExpVector ej, ExpVector e)
criterion4
in interface Reduction<C extends RingElem<C>>
ei
- exponent vector.ej
- exponent vector.e
- = lcm(ei,ej)public boolean criterion4(GenPolynomial<C> A, GenPolynomial<C> B)
criterion4
in interface Reduction<C extends RingElem<C>>
A
- polynomial.B
- polynomial.public GenPolynomial<C> normalformMarked(java.util.List<Monomial<C>> Mp, java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
Mp
- leading monomial list.Pp
- polynomial list.Ap
- polynomial.public java.util.List<GenPolynomial<C>> normalform(java.util.List<GenPolynomial<C>> Pp, java.util.List<GenPolynomial<C>> Ap)
normalform
in interface Reduction<C extends RingElem<C>>
Ap
- polynomial list.Pp
- polynomial list.public ModuleList<C> normalform(ModuleList<C> Pp, ModuleList<C> Ap)
Ap
- module list.Pp
- module list.public ModuleList<C> normalform(ModuleList<C> Pp, ModuleList<C> Ap, boolean top)
Ap
- module list.Pp
- module list.top
- true for TOP term order, false for POT term order.public boolean isTopReducible(java.util.List<GenPolynomial<C>> P, GenPolynomial<C> A)
isTopReducible
in interface Reduction<C extends RingElem<C>>
A
- polynomial.P
- polynomial list.public boolean isReducible(java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
isReducible
in interface Reduction<C extends RingElem<C>>
Ap
- polynomial.Pp
- polynomial list.public boolean isNormalform(java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
isNormalform
in interface Reduction<C extends RingElem<C>>
Ap
- polynomial.Pp
- polynomial list.public boolean isNormalform(java.util.List<GenPolynomial<C>> Pp)
isNormalform
in interface Reduction<C extends RingElem<C>>
Pp
- polynomial list.public java.util.List<GenPolynomial<C>> irreducibleSet(java.util.List<GenPolynomial<C>> Pp)
irreducibleSet
in interface Reduction<C extends RingElem<C>>
Pp
- polynomial list.public boolean isReductionNF(java.util.List<GenPolynomial<C>> row, java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap, GenPolynomial<C> Np)
isReductionNF
in interface Reduction<C extends RingElem<C>>
row
- recording matrix.Pp
- a polynomial list for reduction.Ap
- a polynomial.Np
- nf(Pp,Ap), a normal form of Ap wrt. Pp.