C - coefficient typepublic interface Reduction<C extends RingElem<C>> extends java.io.Serializable
| Modifier and Type | Method and Description |
|---|---|
boolean |
criterion4(ExpVector ei,
ExpVector ej,
ExpVector e)
GB criterium 4.
|
boolean |
criterion4(GenPolynomial<C> A,
GenPolynomial<C> B)
GB criterium 4.
|
boolean |
criterion4(GenPolynomial<C> A,
GenPolynomial<C> B,
ExpVector e)
GB criterium 4.
|
java.util.List<GenPolynomial<C>> |
irreducibleSet(java.util.List<GenPolynomial<C>> Pp)
Irreducible set.
|
boolean |
isNormalform(java.util.List<GenPolynomial<C>> Pp)
Is in Normalform.
|
boolean |
isNormalform(java.util.List<GenPolynomial<C>> P,
GenPolynomial<C> A)
Is in Normalform.
|
boolean |
isReducible(java.util.List<GenPolynomial<C>> P,
GenPolynomial<C> A)
Is reducible.
|
boolean |
isReductionNF(java.util.List<GenPolynomial<C>> row,
java.util.List<GenPolynomial<C>> Pp,
GenPolynomial<C> Ap,
GenPolynomial<C> Np)
Is reduction of normal form.
|
boolean |
isTopReducible(java.util.List<GenPolynomial<C>> P,
GenPolynomial<C> A)
Is top reducible.
|
boolean |
moduleCriterion(int modv,
ExpVector ei,
ExpVector ej)
Module criterium.
|
boolean |
moduleCriterion(int modv,
GenPolynomial<C> A,
GenPolynomial<C> B)
Module criterium.
|
GenPolynomial<C> |
normalform(java.util.List<GenPolynomial<C>> P,
GenPolynomial<C> A)
Normalform.
|
java.util.List<GenPolynomial<C>> |
normalform(java.util.List<GenPolynomial<C>> Pp,
java.util.List<GenPolynomial<C>> Ap)
Normalform Set.
|
GenPolynomial<C> |
normalform(java.util.List<GenPolynomial<C>> row,
java.util.List<GenPolynomial<C>> Pp,
GenPolynomial<C> Ap)
Normalform with recording.
|
GenPolynomial<C> |
SPolynomial(GenPolynomial<C> Ap,
GenPolynomial<C> Bp)
S-Polynomial.
|
GenPolynomial<C> |
SPolynomial(java.util.List<GenPolynomial<C>> S,
int i,
GenPolynomial<C> Ap,
int j,
GenPolynomial<C> Bp)
S-Polynomial with recording.
|
GenPolynomial<C> SPolynomial(GenPolynomial<C> Ap, GenPolynomial<C> Bp)
Ap - polynomial.Bp - polynomial.GenPolynomial<C> SPolynomial(java.util.List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp)
S - recording matrix, is modified.i - index of Ap in basis list.Ap - a polynomial.j - index of Bp in basis list.Bp - a polynomial.boolean moduleCriterion(int modv, GenPolynomial<C> A, GenPolynomial<C> B)
modv - number of module variables.A - polynomial.B - polynomial.boolean moduleCriterion(int modv, ExpVector ei, ExpVector ej)
modv - number of module variables.ei - ExpVector.ej - ExpVector.boolean criterion4(GenPolynomial<C> A, GenPolynomial<C> B, ExpVector e)
A - polynomial.B - polynomial.e - = lcm(ht(A),ht(B))boolean criterion4(GenPolynomial<C> A, GenPolynomial<C> B)
A - polynomial.B - polynomial.boolean criterion4(ExpVector ei, ExpVector ej, ExpVector e)
ei - exponent vector.ej - exponent vector.e - = lcm(ei,ej)boolean isTopReducible(java.util.List<GenPolynomial<C>> P, GenPolynomial<C> A)
A - polynomial.P - polynomial list.boolean isReducible(java.util.List<GenPolynomial<C>> P, GenPolynomial<C> A)
A - polynomial.P - polynomial list.boolean isNormalform(java.util.List<GenPolynomial<C>> P, GenPolynomial<C> A)
A - polynomial.P - polynomial list.boolean isNormalform(java.util.List<GenPolynomial<C>> Pp)
Pp - polynomial list.GenPolynomial<C> normalform(java.util.List<GenPolynomial<C>> P, GenPolynomial<C> A)
A - polynomial.P - polynomial list.java.util.List<GenPolynomial<C>> normalform(java.util.List<GenPolynomial<C>> Pp, java.util.List<GenPolynomial<C>> Ap)
Ap - polynomial list.Pp - polynomial list.GenPolynomial<C> normalform(java.util.List<GenPolynomial<C>> row, java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
row - recording matrix, is modified.Pp - a polynomial list for reduction.Ap - a polynomial.java.util.List<GenPolynomial<C>> irreducibleSet(java.util.List<GenPolynomial<C>> Pp)
Pp - polynomial list.boolean isReductionNF(java.util.List<GenPolynomial<C>> row, java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap, GenPolynomial<C> Np)
row - recording matrix, is modified.Pp - a polynomial list for reduction.Ap - a polynomial.Np - nf(Pp,Ap), a normal form of Ap wrt. Pp.