public class SolvableLocal<C extends GcdRingElem<C>> extends java.lang.Object implements GcdRingElem<SolvableLocal<C>>, QuotPair<GenPolynomial<C>>
Modifier and Type | Field and Description |
---|---|
GenSolvablePolynomial<C> |
den
Denominator part of the element data structure.
|
protected int |
isunit
Flag to remember if this local element is a unit. -1 is unknown, 1 is
unit, 0 not a unit.
|
GenSolvablePolynomial<C> |
num
Numerator part of the element data structure.
|
SolvableLocalRing<C> |
ring
SolvableLocal class factory data structure.
|
Modifier | Constructor and Description |
---|---|
|
SolvableLocal(SolvableLocalRing<C> r)
The constructor creates a SolvableLocal object from a ring factory.
|
|
SolvableLocal(SolvableLocalRing<C> r,
GenSolvablePolynomial<C> n)
The constructor creates a SolvableLocal object from a ring factory and a
numerator polynomial.
|
|
SolvableLocal(SolvableLocalRing<C> r,
GenSolvablePolynomial<C> n,
GenSolvablePolynomial<C> d)
The constructor creates a SolvableLocal object from a ring factory and a
numerator and denominator polynomial.
|
protected |
SolvableLocal(SolvableLocalRing<C> r,
GenSolvablePolynomial<C> n,
GenSolvablePolynomial<C> d,
boolean isred)
The constructor creates a SolvableLocal object from a ring factory and a
numerator and denominator polynomial.
|
Modifier and Type | Method and Description |
---|---|
SolvableLocal<C> |
abs()
SolvableLocal absolute value.
|
int |
compareTo(SolvableLocal<C> b)
SolvableLocal comparison.
|
SolvableLocal<C> |
copy()
Clone this.
|
GenSolvablePolynomial<C> |
denominator()
Denominator.
|
SolvableLocal<C> |
divide(SolvableLocal<C> S)
SolvableLocal division.
|
SolvableLocal<C>[] |
egcd(SolvableLocal<C> b)
Extended greatest common divisor.
|
boolean |
equals(java.lang.Object b)
Comparison with any other object.
|
SolvableLocalRing<C> |
factory()
Get the corresponding element factory.
|
SolvableLocal<C> |
gcd(SolvableLocal<C> b)
Greatest common divisor.
|
int |
hashCode()
Hash code for this local.
|
SolvableLocal<C> |
inverse()
SolvableLocal inverse.
|
boolean |
isConstant()
Is Qoutient a constant.
|
boolean |
isONE()
Is SolvableLocal one.
|
boolean |
isUnit()
Is SolvableLocal unit.
|
boolean |
isZERO()
Is SolvableLocal zero.
|
SolvableLocal<C> |
monic()
SolvableLocal monic.
|
SolvableLocal<C> |
multiply(C b)
SolvableLocal multiplication by coefficient.
|
SolvableLocal<C> |
multiply(ExpVector e)
SolvableLocal multiplication by exponent.
|
SolvableLocal<C> |
multiply(GenSolvablePolynomial<C> b)
SolvableLocal multiplication by GenSolvablePolynomial.
|
SolvableLocal<C> |
multiply(SolvableLocal<C> S)
SolvableLocal multiplication.
|
SolvableLocal<C> |
negate()
SolvableLocal negate.
|
GenSolvablePolynomial<C> |
numerator()
Numerator.
|
SolvableLocal<C> |
remainder(SolvableLocal<C> S)
SolvableLocal remainder.
|
int |
signum()
SolvableLocal signum.
|
SolvableLocal<C> |
subtract(SolvableLocal<C> S)
SolvableLocal subtraction.
|
SolvableLocal<C> |
sum(SolvableLocal<C> S)
SolvableLocal summation.
|
java.lang.String |
toScript()
Get a scripting compatible string representation.
|
java.lang.String |
toScriptFactory()
Get a scripting compatible string representation of the factory.
|
java.lang.String |
toString()
Get the String representation as RingElem.
|
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
leftDivide, leftRemainder, power, quotientRemainder, rightDivide, rightRemainder, twosidedDivide, twosidedRemainder
public final SolvableLocalRing<C extends GcdRingElem<C>> ring
public final GenSolvablePolynomial<C extends GcdRingElem<C>> num
public final GenSolvablePolynomial<C extends GcdRingElem<C>> den
protected int isunit
public SolvableLocal(SolvableLocalRing<C> r)
r
- ring factory.public SolvableLocal(SolvableLocalRing<C> r, GenSolvablePolynomial<C> n)
r
- ring factory.n
- numerator polynomial.public SolvableLocal(SolvableLocalRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d)
r
- ring factory.n
- numerator polynomial.d
- denominator polynomial.protected SolvableLocal(SolvableLocalRing<C> r, GenSolvablePolynomial<C> n, GenSolvablePolynomial<C> d, boolean isred)
r
- ring factory.n
- numerator polynomial.d
- denominator polynomial.isred
- true if gcd(n,d) == 1, else false.public SolvableLocalRing<C> factory()
factory
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
Element.factory()
public GenSolvablePolynomial<C> numerator()
numerator
in interface QuotPair<GenPolynomial<C extends GcdRingElem<C>>>
QuotPair.numerator()
public GenSolvablePolynomial<C> denominator()
denominator
in interface QuotPair<GenPolynomial<C extends GcdRingElem<C>>>
QuotPair.denominator()
public SolvableLocal<C> copy()
copy
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
Object.clone()
public boolean isZERO()
isZERO
in interface AbelianGroupElem<SolvableLocal<C extends GcdRingElem<C>>>
AbelianGroupElem.isZERO()
public boolean isONE()
isONE
in interface MonoidElem<SolvableLocal<C extends GcdRingElem<C>>>
MonoidElem.isONE()
public boolean isUnit()
isUnit
in interface MonoidElem<SolvableLocal<C extends GcdRingElem<C>>>
MonoidElem.isUnit()
public boolean isConstant()
isConstant
in interface QuotPair<GenPolynomial<C extends GcdRingElem<C>>>
public java.lang.String toString()
toString
in class java.lang.Object
Object.toString()
public java.lang.String toScript()
toScript
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
Element.toScript()
public java.lang.String toScriptFactory()
toScriptFactory
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
Element.toScriptFactory()
public int compareTo(SolvableLocal<C> b)
compareTo
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
compareTo
in interface java.lang.Comparable<SolvableLocal<C extends GcdRingElem<C>>>
b
- SolvableLocal.public boolean equals(java.lang.Object b)
equals
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
equals
in class java.lang.Object
Object.equals(java.lang.Object)
public int hashCode()
hashCode
in interface Element<SolvableLocal<C extends GcdRingElem<C>>>
hashCode
in class java.lang.Object
Object.hashCode()
public SolvableLocal<C> abs()
abs
in interface AbelianGroupElem<SolvableLocal<C extends GcdRingElem<C>>>
AbelianGroupElem.abs()
public SolvableLocal<C> sum(SolvableLocal<C> S)
sum
in interface AbelianGroupElem<SolvableLocal<C extends GcdRingElem<C>>>
S
- SolvableLocal.public SolvableLocal<C> negate()
negate
in interface AbelianGroupElem<SolvableLocal<C extends GcdRingElem<C>>>
AbelianGroupElem.negate()
public int signum()
signum
in interface AbelianGroupElem<SolvableLocal<C extends GcdRingElem<C>>>
AbelianGroupElem.signum()
public SolvableLocal<C> subtract(SolvableLocal<C> S)
subtract
in interface AbelianGroupElem<SolvableLocal<C extends GcdRingElem<C>>>
S
- SolvableLocal.public SolvableLocal<C> divide(SolvableLocal<C> S)
divide
in interface MonoidElem<SolvableLocal<C extends GcdRingElem<C>>>
S
- SolvableLocal.public SolvableLocal<C> inverse()
inverse
in interface MonoidElem<SolvableLocal<C extends GcdRingElem<C>>>
MonoidElem.inverse()
public SolvableLocal<C> remainder(SolvableLocal<C> S)
remainder
in interface MonoidElem<SolvableLocal<C extends GcdRingElem<C>>>
S
- SolvableLocal.public SolvableLocal<C> multiply(SolvableLocal<C> S)
multiply
in interface MonoidElem<SolvableLocal<C extends GcdRingElem<C>>>
S
- SolvableLocal.public SolvableLocal<C> multiply(GenSolvablePolynomial<C> b)
b
- GenSolvablePolynomial.public SolvableLocal<C> multiply(C b)
b
- coefficient.public SolvableLocal<C> multiply(ExpVector e)
e
- exponent vector.public SolvableLocal<C> monic()
public SolvableLocal<C> gcd(SolvableLocal<C> b)
gcd
in interface RingElem<SolvableLocal<C extends GcdRingElem<C>>>
b
- other element.public SolvableLocal<C>[] egcd(SolvableLocal<C> b)
egcd
in interface RingElem<SolvableLocal<C extends GcdRingElem<C>>>
b
- other element.