public class SolvableIdeal<C extends GcdRingElem<C>> extends java.lang.Object implements java.lang.Comparable<SolvableIdeal<C>>, java.io.Serializable
Modifier and Type | Class and Description |
---|---|
static class |
SolvableIdeal.Side
Side variant of ideal.
|
Modifier and Type | Field and Description |
---|---|
protected SolvableGroebnerBaseAbstract<C> |
bb
Groebner base engine.
|
protected boolean |
isGB
Indicator if list is a Groebner Base.
|
protected boolean |
isTopt
Indicator if list has optimized term order.
|
protected PolynomialList<C> |
list
The data structure is a PolynomialList.
|
protected SolvableReduction<C> |
red
Reduction engine.
|
protected SolvableIdeal.Side |
sided
Indicator of side of Groebner Base.
|
protected boolean |
testGB
Indicator if test has been performed if this is a Groebner Base.
|
Modifier and Type | Method and Description |
---|---|
SolvableIdeal<C> |
annihilator(GenSolvablePolynomial<C> h)
Annihilator for element modulo this ideal.
|
SolvableIdeal<C> |
annihilator(SolvableIdeal<C> H)
Annihilator for ideal modulo this ideal.
|
int |
commonZeroTest()
Ideal common zero test.
|
int |
compareTo(SolvableIdeal<C> L)
SolvableIdeal comparison.
|
java.util.List<GenSolvablePolynomial<C>> |
constructUnivariate()
Construct univariate polynomials of minimal degree in all variables in
zero dimensional ideal(G).
|
GenSolvablePolynomial<C> |
constructUnivariate(int i)
Construct univariate polynomial of minimal degree in variable i in zero
dimensional ideal(G).
|
boolean |
contains(GenSolvablePolynomial<C> b)
Solvable ideal containment.
|
boolean |
contains(java.util.List<GenSolvablePolynomial<C>> B)
Solvable ideal containment.
|
boolean |
contains(SolvableIdeal<C> B)
Solvable ideal containment.
|
SolvableIdeal<C> |
copy()
Clone this.
|
Dimension |
dimension()
Ideal dimension.
|
void |
doGB()
Do Groebner Base. compute the left Groebner Base for this ideal.
|
SolvableIdeal<C> |
eliminate(GenSolvablePolynomialRing<C> R)
Eliminate.
|
boolean |
equals(java.lang.Object b)
Comparison with any other object.
|
SolvableIdeal<C> |
GB()
Groebner Base.
|
java.util.List<GenSolvablePolynomial<C>> |
getList()
Get the List of GenSolvablePolynomials.
|
SolvableIdeal<C> |
getONE()
Get the one ideal.
|
GenSolvablePolynomialRing<C> |
getRing()
Get the GenSolvablePolynomialRing.
|
SolvableIdeal<C> |
getZERO()
Get the zero ideal.
|
int |
hashCode()
Hash code for this solvable ideal.
|
SolvableIdeal<C> |
infiniteQuotient(GenSolvablePolynomial<C> h)
Infinite quotient.
|
SolvableIdeal<C> |
infiniteQuotient(SolvableIdeal<C> H)
Infinite Quotient.
|
int |
infiniteQuotientExponent(GenSolvablePolynomial<C> h,
SolvableIdeal<C> Q)
Infinite quotient exponent.
|
SolvableIdeal<C> |
infiniteQuotientRab(GenSolvablePolynomial<C> h)
Infinite quotient.
|
SolvableIdeal<C> |
infiniteQuotientRab(SolvableIdeal<C> H)
Infinite Quotient.
|
SolvableIdeal<C> |
intersect(GenSolvablePolynomialRing<C> R)
Intersection.
|
SolvableIdeal<C> |
intersect(java.util.List<SolvableIdeal<C>> Bl)
Intersection.
|
SolvableIdeal<C> |
intersect(SolvableIdeal<C> B)
Intersection.
|
GenSolvablePolynomial<C> |
inverse(GenSolvablePolynomial<C> h)
Inverse for element modulo this ideal.
|
boolean |
isAnnihilator(GenSolvablePolynomial<C> h,
SolvableIdeal<C> A)
Test for annihilator of element modulo this ideal.
|
boolean |
isAnnihilator(SolvableIdeal<C> H,
SolvableIdeal<C> A)
Test for annihilator of ideal modulo this ideal.
|
boolean |
isGB()
Test if this is a left Groebner base.
|
boolean |
isMaximal()
Test if this ideal is maximal.
|
boolean |
isONE()
Test if ONE is contained in the ideal.
|
boolean |
isRadicalMember(GenSolvablePolynomial<C> h)
Radical membership test.
|
boolean |
isRightGB()
Test if this is a right Groebner base.
|
boolean |
isTwosidedGB()
Test if this is a twosided Groebner base.
|
boolean |
isUnit(GenSolvablePolynomial<C> h)
Test if element is a unit modulo this ideal.
|
boolean |
isZERO()
Test if ZERO ideal.
|
GenSolvablePolynomial<C> |
normalform(GenSolvablePolynomial<C> h)
Normalform for element.
|
java.util.List<GenSolvablePolynomial<C>> |
normalform(java.util.List<GenSolvablePolynomial<C>> L)
Normalform for list of solvable elements.
|
SolvableIdeal<C> |
power(int d)
Power.
|
SolvableIdeal<C> |
product(GenSolvablePolynomial<C> b)
Left product.
|
SolvableIdeal<C> |
product(SolvableIdeal<C> B)
Product.
|
SolvableIdeal<C> |
quotient(GenSolvablePolynomial<C> h)
Quotient.
|
SolvableIdeal<C> |
quotient(SolvableIdeal<C> H)
Quotient.
|
SolvableIdeal<C> |
rightGB()
Groebner Base.
|
SolvableIdeal<C> |
sum(GenSolvablePolynomial<C> b)
Solvable summation.
|
SolvableIdeal<C> |
sum(java.util.List<GenSolvablePolynomial<C>> L)
Solvable summation.
|
SolvableIdeal<C> |
sum(SolvableIdeal<C> B)
Solvable ideal summation.
|
java.lang.String |
toScript()
Get a scripting compatible string representation.
|
java.lang.String |
toString()
String representation of the solvable ideal.
|
SolvableIdeal<C> |
twosidedGB()
Groebner Base.
|
java.util.List<java.lang.Long> |
univariateDegrees()
Univariate head term degrees.
|
protected PolynomialList<C extends GcdRingElem<C>> list
protected boolean isGB
protected SolvableIdeal.Side sided
protected boolean testGB
protected boolean isTopt
protected final SolvableGroebnerBaseAbstract<C extends GcdRingElem<C>> bb
protected final SolvableReduction<C extends GcdRingElem<C>> red
public SolvableIdeal(GenSolvablePolynomialRing<C> ring)
ring
- solvable polynomial ringpublic SolvableIdeal(GenSolvablePolynomialRing<C> ring, java.util.List<GenSolvablePolynomial<C>> F)
ring
- solvable polynomial ringF
- list of solvable polynomialspublic SolvableIdeal(GenSolvablePolynomialRing<C> ring, java.util.List<GenSolvablePolynomial<C>> F, boolean gb)
ring
- solvable polynomial ringF
- list of solvable polynomialsgb
- true if F is known to be a Groebner Base, else falsepublic SolvableIdeal(GenSolvablePolynomialRing<C> ring, java.util.List<GenSolvablePolynomial<C>> F, boolean gb, boolean topt)
ring
- solvable polynomial ringF
- list of solvable polynomialsgb
- true if F is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsepublic SolvableIdeal(GenSolvablePolynomialRing<C> ring, java.util.List<GenSolvablePolynomial<C>> F, SolvableIdeal.Side s)
ring
- solvable polynomial ringF
- list of solvable polynomialss
- side variant of ideal or Groebner Basepublic SolvableIdeal(GenSolvablePolynomialRing<C> ring, java.util.List<GenSolvablePolynomial<C>> F, boolean gb, SolvableIdeal.Side s)
ring
- solvable polynomial ringF
- list of solvable polynomialsgb
- true if F is known to be a Groebner Base, else falses
- side variant of ideal or Groebner Basepublic SolvableIdeal(PolynomialList<C> list)
list
- solvable polynomial listpublic SolvableIdeal(PolynomialList<C> list, SolvableGroebnerBaseAbstract<C> bb, SolvableReduction<C> red)
list
- solvable polynomial listbb
- Groebner Base enginered
- Reduction enginepublic SolvableIdeal(PolynomialList<C> list, boolean gb)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsepublic SolvableIdeal(PolynomialList<C> list, boolean gb, boolean topt)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsepublic SolvableIdeal(PolynomialList<C> list, boolean gb, SolvableIdeal.Side s)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falses
- side variant of ideal or Groebner Basepublic SolvableIdeal(PolynomialList<C> list, boolean gb, boolean topt, SolvableIdeal.Side s)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falses
- side variant of ideal or Groebner Basepublic SolvableIdeal(PolynomialList<C> list, boolean gb, SolvableGroebnerBaseAbstract<C> bb, SolvableReduction<C> red)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsebb
- Groebner Base enginered
- Reduction enginepublic SolvableIdeal(PolynomialList<C> list, boolean gb, SolvableGroebnerBaseAbstract<C> bb)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsebb
- Groebner Base enginepublic SolvableIdeal(PolynomialList<C> list, boolean gb, boolean topt, SolvableGroebnerBaseAbstract<C> bb)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsebb
- Groebner Base enginepublic SolvableIdeal(PolynomialList<C> list, boolean gb, boolean topt, SolvableGroebnerBaseAbstract<C> bb, SolvableReduction<C> red)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsebb
- Groebner Base enginered
- Reduction enginepublic SolvableIdeal(PolynomialList<C> list, boolean gb, boolean topt, SolvableGroebnerBaseAbstract<C> bb, SolvableReduction<C> red, SolvableIdeal.Side s)
list
- solvable polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsebb
- Groebner Base enginered
- Reduction engines
- side variant of ideal or Groebner Basepublic SolvableIdeal<C> copy()
public java.util.List<GenSolvablePolynomial<C>> getList()
public GenSolvablePolynomialRing<C> getRing()
public SolvableIdeal<C> getZERO()
public SolvableIdeal<C> getONE()
public java.lang.String toString()
toString
in class java.lang.Object
Object.toString()
public java.lang.String toScript()
Element.toScript()
public boolean equals(java.lang.Object b)
equals
in class java.lang.Object
Object.equals(java.lang.Object)
public int compareTo(SolvableIdeal<C> L)
compareTo
in interface java.lang.Comparable<SolvableIdeal<C extends GcdRingElem<C>>>
L
- other solvable ideal.public int hashCode()
hashCode
in class java.lang.Object
Object.hashCode()
public boolean isZERO()
public boolean isONE()
! id.isONE()
.public boolean isGB()
public void doGB()
public SolvableIdeal<C> GB()
public boolean isTwosidedGB()
public SolvableIdeal<C> twosidedGB()
public boolean isRightGB()
public SolvableIdeal<C> rightGB()
public boolean contains(SolvableIdeal<C> B)
B
- solvable idealpublic boolean contains(GenSolvablePolynomial<C> b)
b
- solvable polynomialpublic boolean contains(java.util.List<GenSolvablePolynomial<C>> B)
B
- list of solvable polynomialspublic SolvableIdeal<C> sum(SolvableIdeal<C> B)
B
- solvable idealpublic SolvableIdeal<C> sum(GenSolvablePolynomial<C> b)
b
- solvable polynomialpublic SolvableIdeal<C> sum(java.util.List<GenSolvablePolynomial<C>> L)
L
- list of solvable polynomialspublic SolvableIdeal<C> product(SolvableIdeal<C> B)
B
- solvable idealpublic SolvableIdeal<C> product(GenSolvablePolynomial<C> b)
b
- solvable polynomialpublic SolvableIdeal<C> intersect(java.util.List<SolvableIdeal<C>> Bl)
Bl
- list of solvable idealspublic SolvableIdeal<C> intersect(SolvableIdeal<C> B)
B
- solvable idealpublic SolvableIdeal<C> intersect(GenSolvablePolynomialRing<C> R)
R
- solvable polynomial ringpublic SolvableIdeal<C> eliminate(GenSolvablePolynomialRing<C> R)
R
- solvable polynomial ringpublic SolvableIdeal<C> quotient(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic SolvableIdeal<C> quotient(SolvableIdeal<C> H)
H
- solvable idealpublic SolvableIdeal<C> infiniteQuotientRab(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic int infiniteQuotientExponent(GenSolvablePolynomial<C> h, SolvableIdeal<C> Q)
h
- solvable polynomialQ
- quotient this : h^\infinitypublic SolvableIdeal<C> infiniteQuotient(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic boolean isRadicalMember(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic SolvableIdeal<C> infiniteQuotient(SolvableIdeal<C> H)
H
- solvable idealpublic SolvableIdeal<C> infiniteQuotientRab(SolvableIdeal<C> H)
H
- solvable idealpublic SolvableIdeal<C> power(int d)
d
- integerpublic GenSolvablePolynomial<C> normalform(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic java.util.List<GenSolvablePolynomial<C>> normalform(java.util.List<GenSolvablePolynomial<C>> L)
L
- solvable polynomial listpublic SolvableIdeal<C> annihilator(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic boolean isAnnihilator(GenSolvablePolynomial<C> h, SolvableIdeal<C> A)
h
- solvable polynomialA
- solvable idealpublic SolvableIdeal<C> annihilator(SolvableIdeal<C> H)
H
- solvable idealpublic boolean isAnnihilator(SolvableIdeal<C> H, SolvableIdeal<C> A)
H
- solvable idealA
- solvable idealpublic GenSolvablePolynomial<C> inverse(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic boolean isUnit(GenSolvablePolynomial<C> h)
h
- solvable polynomialpublic int commonZeroTest()
public boolean isMaximal()
public java.util.List<java.lang.Long> univariateDegrees()
public Dimension dimension()
public java.util.List<GenSolvablePolynomial<C>> constructUnivariate()
public GenSolvablePolynomial<C> constructUnivariate(int i)
i
- variable index.