public class RootFactoryApp extends java.lang.Object
| Constructor and Description |
|---|
RootFactoryApp() |
| Modifier and Type | Method and Description |
|---|---|
static <C extends GcdRingElem<C> & Rational> |
complexAlgebraicNumbersComplex(GenPolynomial<Complex<C>> f)
Complex algebraic number roots.
|
static <C extends GcdRingElem<C> & Rational> |
complexAlgebraicNumbersSquarefree(GenPolynomial<Complex<C>> f)
Complex algebraic number roots.
|
static <C extends GcdRingElem<C> & Rational> |
isRoot(GenPolynomial<Complex<C>> f,
Complex<RealAlgebraicNumber<C>> r)
Is complex algebraic number a root of a polynomial.
|
static <C extends GcdRingElem<C> & Rational> |
isRoot(GenPolynomial<Complex<C>> f,
java.util.List<Complex<RealAlgebraicNumber<C>>> R)
Is complex algebraic number a root of a polynomial.
|
static <C extends GcdRingElem<C> & Rational> |
isRootRealCoeff(GenPolynomial<C> f,
Complex<RealAlgebraicNumber<C>> r)
Is complex algebraic number a root of a polynomial.
|
static <C extends GcdRingElem<C> & Rational> |
rootReduce(AlgebraicNumberRing<C> a,
AlgebraicNumberRing<C> b)
Root reduce of real and complex algebraic numbers.
|
static <C extends GcdRingElem<C> & Rational> |
rootReduce(AlgebraicRoots<C> a,
AlgebraicRoots<C> b)
Root reduce of real and complex algebraic numbers.
|
static <C extends GcdRingElem<C> & Rational> |
rootReduce(GenPolynomial<C> a,
GenPolynomial<C> b)
Root reduce of real and complex algebraic numbers.
|
static <C extends GcdRingElem<C> & Rational> |
rootsOfUnity(AlgebraicRootsPrimElem<C> ar)
Roots of unity of real and complex algebraic numbers.
|
public RootFactoryApp()
public static <C extends GcdRingElem<C> & Rational> boolean isRootRealCoeff(GenPolynomial<C> f, Complex<RealAlgebraicNumber<C>> r)
f - univariate polynomial.r - complex algebraic number.public static <C extends GcdRingElem<C> & Rational> boolean isRoot(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r)
f - univariate polynomial.r - complex algebraic number.public static <C extends GcdRingElem<C> & Rational> boolean isRoot(GenPolynomial<Complex<C>> f, java.util.List<Complex<RealAlgebraicNumber<C>>> R)
f - univariate polynomial.R - list of complex algebraic numbers.public static <C extends GcdRingElem<C> & Rational> java.util.List<Complex<RealAlgebraicNumber<C>>> complexAlgebraicNumbersComplex(GenPolynomial<Complex<C>> f)
f - univariate polynomial.public static <C extends GcdRingElem<C> & Rational> java.util.List<Complex<RealAlgebraicNumber<C>>> complexAlgebraicNumbersSquarefree(GenPolynomial<Complex<C>> f)
f - univariate squarefree polynomial.public static <C extends GcdRingElem<C> & Rational> AlgebraicRootsPrimElem<C> rootReduce(AlgebraicRoots<C> a, AlgebraicRoots<C> b)
a - container of real and complex algebraic numbers.b - container of real and complex algebraic numbers.public static <C extends GcdRingElem<C> & Rational> AlgebraicRootsPrimElem<C> rootReduce(GenPolynomial<C> a, GenPolynomial<C> b)
a - polynomial.b - polynomial.public static <C extends GcdRingElem<C> & Rational> AlgebraicRootsPrimElem<C> rootReduce(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b)
a - algebraic number ring.b - algebraic number ring.public static <C extends GcdRingElem<C> & Rational> AlgebraicRootsPrimElem<C> rootsOfUnity(AlgebraicRootsPrimElem<C> ar)
ar - container of real and complex algebraic numbers with primitive element.