C - coefficient typepublic class ReductionSeq<C extends RingElem<C>> extends java.lang.Object
| Constructor and Description |
|---|
ReductionSeq()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
contains(java.util.List<MultiVarPowerSeries<C>> S,
java.util.List<MultiVarPowerSeries<C>> B)
Ideal containment.
|
boolean |
criterion4(MultiVarPowerSeries<C> A,
MultiVarPowerSeries<C> B,
ExpVector e)
GB criterion 4.
|
boolean |
isTopReducible(java.util.List<MultiVarPowerSeries<C>> P,
MultiVarPowerSeries<C> A)
Is top reducible.
|
boolean |
moduleCriterion(int modv,
ExpVector ei,
ExpVector ej)
Module criterion.
|
boolean |
moduleCriterion(int modv,
MultiVarPowerSeries<C> A,
MultiVarPowerSeries<C> B)
Module criterium.
|
MultiVarPowerSeries<C> |
normalform(java.util.List<MultiVarPowerSeries<C>> Pp,
MultiVarPowerSeries<C> Ap)
Top normal-form with Mora's algorithm.
|
MultiVarPowerSeries<C> |
SPolynomial(MultiVarPowerSeries<C> A,
MultiVarPowerSeries<C> B)
S-Power-series, S-polynomial.
|
java.util.List<MultiVarPowerSeries<C>> |
totalNormalform(java.util.List<MultiVarPowerSeries<C>> P)
Total reduced normalform with Mora's algorithm.
|
MultiVarPowerSeries<C> |
totalNormalform(java.util.List<MultiVarPowerSeries<C>> P,
MultiVarPowerSeries<C> A)
Total reduced normal-form with Mora's algorithm.
|
public ReductionSeq()
public boolean moduleCriterion(int modv, MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B)
modv - number of module variables.A - power series.B - power series.public boolean moduleCriterion(int modv, ExpVector ei, ExpVector ej)
modv - number of module variables.ei - ExpVector.ej - ExpVector.public boolean criterion4(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B, ExpVector e)
A - power series.B - power series.e - = lcm(ht(A),ht(B))public MultiVarPowerSeries<C> SPolynomial(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B)
A - power series.B - power series.public MultiVarPowerSeries<C> normalform(java.util.List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap)
Ap - power series.Pp - power series list.public MultiVarPowerSeries<C> totalNormalform(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
A - power series.P - power series list.public java.util.List<MultiVarPowerSeries<C>> totalNormalform(java.util.List<MultiVarPowerSeries<C>> P)
P - power series list.public boolean isTopReducible(java.util.List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A)
A - power series.P - power series list.public boolean contains(java.util.List<MultiVarPowerSeries<C>> S, java.util.List<MultiVarPowerSeries<C>> B)
S - standard base.B - list of power series