Module jas :: Class SolvableIdeal
[hide private]
[frames] | no frames]

Class SolvableIdeal

source code

Represents a JAS solvable polynomial ideal.

Methods for left, right two-sided Groebner basees and others.

Instance Methods [hide private]
 
__init__(self, ring, ringstr="", list=None)
Constructor for an ideal in a solvable polynomial ring.
source code
 
__str__(self)
Create a string representation.
source code
 
__cmp__(self, other)
Compare two ideals.
source code
 
__eq__(self, other)
Test if two ideals are equal.
source code
 
leftGB(self)
Compute a left Groebner base.
source code
 
isLeftGB(self)
Test if this is a left Groebner base.
source code
 
twosidedGB(self)
Compute a two-sided Groebner base.
source code
 
isTwosidedGB(self)
Test if this is a two-sided Groebner base.
source code
 
rightGB(self)
Compute a right Groebner base.
source code
 
isRightGB(self)
Test if this is a right Groebner base.
source code
 
intersectRing(self, ring)
Compute the intersection of this and the polynomial ring.
source code
 
intersect(self, other)
Compute the intersection of this and the other ideal.
source code
 
sum(self, other)
Compute the sum of this and the other ideal.
source code
 
univariates(self)
Compute the univariate polynomials in each variable of this twosided ideal.
source code
 
toQuotientCoefficients(self)
Convert to polynomials with SolvableQuotient coefficients.
source code
 
inverse(self, p)
Compute the inverse polynomial modulo this ideal, if it exists.
source code
 
leftReduction(self, p)
Compute a left normal form of p with respect to this ideal.
source code
 
rightReduction(self, p)
Compute a right normal form of p with respect to this ideal.
source code
 
parLeftGB(self, th)
Compute a left Groebner base in parallel.
source code
 
parTwosidedGB(self, th)
Compute a two-sided Groebner base in parallel.
source code
 
leftSyzygy(self)
left Syzygy of generating polynomials.
source code
 
isLeftSyzygy(self, m)
Test if this is a left syzygy of the module in m.
source code
 
rightSyzygy(self)
right Syzygy of generating polynomials.
source code
 
isRightSyzygy(self, m)
Test if this is a right syzygy of the module in m.
source code