Class PolyRing
source code
Ring --+
|
PolyRing
Represents a JAS polynomial ring: GenPolynomialRing.
Provides more convenient constructor. Then returns a Ring.
Example of the construction a polynomial ring over the rational
numbers QQ() in the variables 'x' and 'y', together with the input of a
polynomial (x+y)**3. >>> from jas import PolyRing, QQ
>>> r = PolyRing(QQ(),"x,y") globally defined
variables: one, x, y
The example works with p = (x+y)**3, but in doctests the full notation
r.x and r.y must be used for x respectively y. >>> p =
(r.x+r.y)**3 >>> print p ( y**3 + 3 * x * y**2 + 3 * x**2 * y +
x**3 )
|
|
|
|
Inherited from Ring :
__eq__ ,
algebraicRoots ,
complexRoots ,
decimalRoots ,
element ,
factors ,
factorsAbsolute ,
gcd ,
gens ,
ideal ,
inject_variables ,
integrate ,
one ,
paramideal ,
powerseriesRing ,
random ,
realRoots ,
rootReduce ,
rootRefine ,
rootsOfUnity ,
squarefreeFactors ,
variable_generators ,
zero
|
|
lex = Order.INVLEX
Abreviation for INVLEX.
|
|
grad = Order.IGRLEX
Abreviation for IGRLEX.
|
__init__(self,
coeff,
vars,
order=Order.IGRLEX)
(Constructor)
| source code
|
Ring constructor.
coeff = factory for coefficients, vars = string with variable names,
order = term order or weight matrix.
- Overrides:
Ring.__init__
|
__str__(self)
(Informal representation operator)
| source code
|
Create a string representation.
- Overrides:
Ring.__str__
|