Module jas :: Class PolyRing
[hide private]
[frames] | no frames]

Class PolyRing

source code

Ring --+
       |
      PolyRing

Represents a JAS polynomial ring: GenPolynomialRing.

Provides more convenient constructor. Then returns a Ring.

Example of the construction a polynomial ring over the rational numbers QQ() in the variables 'x' and 'y', together with the input of a polynomial (x+y)**3. >>> from jas import PolyRing, QQ >>> r = PolyRing(QQ(),"x,y") globally defined variables: one, x, y

The example works with p = (x+y)**3, but in doctests the full notation r.x and r.y must be used for x respectively y. >>> p = (r.x+r.y)**3 >>> print p ( y**3 + 3 * x * y**2 + 3 * x**2 * y + x**3 )

Instance Methods [hide private]
 
__init__(self, coeff, vars, order=Order.IGRLEX)
Ring constructor.
source code
 
__str__(self)
Create a string representation.
source code

Inherited from Ring: __eq__, algebraicRoots, complexRoots, decimalRoots, element, factors, factorsAbsolute, gcd, gens, ideal, inject_variables, integrate, one, paramideal, powerseriesRing, random, realRoots, rootReduce, rootRefine, rootsOfUnity, squarefreeFactors, variable_generators, zero

Static Methods [hide private]

Inherited from Ring: getEngineFactor, getEngineGcd, getEngineSqf

Class Variables [hide private]
  lex = Order.INVLEX
Abreviation for INVLEX.
  grad = Order.IGRLEX
Abreviation for IGRLEX.
Method Details [hide private]

__init__(self, coeff, vars, order=Order.IGRLEX)
(Constructor)

source code 

Ring constructor.

coeff = factory for coefficients, vars = string with variable names, order = term order or weight matrix.

Overrides: Ring.__init__

__str__(self)
(Informal representation operator)

source code 

Create a string representation.

Overrides: Ring.__str__