Module jas :: Class Ideal
[hide private]
[frames] | no frames]

Class Ideal

source code

Represents a JAS polynomial ideal: PolynomialList and Ideal.

Methods for Groebner bases, ideal sum, intersection and others.

Instance Methods [hide private]
 
__init__(self, ring, polystr="", list=None)
Ideal constructor.
source code
 
__str__(self)
Create a string representation.
source code
 
__eq__(self, other)
Test if two ideals are equal.
source code
 
paramideal(self)
Create an ideal in a polynomial ring with parameter coefficients.
source code
 
GB(self)
Compute a Groebner base.
source code
 
isGB(self)
Test if this is a Groebner base.
source code
 
eGB(self)
Compute an e-Groebner base.
source code
 
iseGB(self)
Test if this is an e-Groebner base.
source code
 
dGB(self)
Compute an d-Groebner base.
source code
 
isdGB(self)
Test if this is a d-Groebner base.
source code
 
parNewGB(self, th)
Compute in parallel a Groebner base.
source code
 
parGB(self, th)
Compute in parallel a Groebner base.
source code
 
distGB(self, th=2, machine="examples/machines.localhost", port=55711)
Compute on a distributed system a Groebner base.
source code
 
distClient(self, port=4711)
Client for a distributed computation.
source code
 
distClientStop(self)
Stop client for a distributed computation.
source code
 
eReduction(self, p)
Compute a e-normal form of p with respect to this ideal.
source code
 
reduction(self, p)
Compute a normal form of p with respect to this ideal.
source code
 
NF(self, reducer)
Compute a normal form of this ideal with respect to reducer.
source code
 
lift(self, p)
Represent p as element of this ideal.
source code
 
interreduced_basis(self)
Compute a interreduced ideal basis of this.
source code
 
intersectRing(self, ring)
Compute the intersection of this and the given polynomial ring.
source code
 
intersect(self, id2)
Compute the intersection of this and the given ideal id2.
source code
 
eliminateRing(self, ring)
Compute the elimination ideal of this and the given polynomial ring.
source code
 
sat(self, id2)
Compute the saturation of this with respect to given ideal id2.
source code
 
sum(self, other)
Compute the sum of this and the ideal.
source code
 
univariates(self)
Compute the univariate polynomials in each variable of this ideal.
source code
 
inverse(self, p)
Compute the inverse polynomial modulo this ideal, if it exists.
source code
 
optimize(self)
Optimize the term order on the variables.
source code
 
realRoots(self)
Compute real roots of 0-dim ideal.
source code
 
realRootsPrint(self)
Print decimal approximation of real roots of 0-dim ideal.
source code
 
radicalDecomp(self)
Compute radical decomposition of this ideal.
source code
 
decomposition(self)
Compute irreducible decomposition of this ideal.
source code
 
complexRoots(self)
Compute complex roots of 0-dim ideal.
source code
 
complexRootsPrint(self)
Print decimal approximation of complex roots of 0-dim ideal.
source code
 
primeDecomp(self)
Compute prime decomposition of this ideal.
source code
 
primaryDecomp(self)
Compute primary decomposition of this ideal.
source code
 
toInteger(self)
Convert rational coefficients to integer coefficients.
source code
 
toModular(self, mf)
Convert integer coefficients to modular coefficients.
source code
 
CS(self)
Compute a Characteristic Set.
source code
 
isCS(self)
Test for Characteristic Set.
source code
 
csReduction(self, p)
Compute a normal form of p with respect to this characteristic set.
source code
 
syzygy(self)
Syzygy of generating polynomials.
source code
 
isSyzygy(self, m)
Test if this is a syzygy of the module in m.
source code
Method Details [hide private]

interreduced_basis(self)

source code 

Compute a interreduced ideal basis of this.

Compatibility method for Sage/Singular.