C - ring element typepublic class MultiVarPowerSeries<C extends RingElem<C>> extends java.lang.Object implements RingElem<MultiVarPowerSeries<C>>
toString(), compareTo(), equals(),
evaluate(), or methods which use the order() or
orderExpVector() methods, like signum(),
abs(), divide(), remainder() and
gcd(). Note: Currently the term order is fixed to the
order defined by the iterator over exponent vectors in class
ExpVectorIterator.| Modifier and Type | Field and Description |
|---|---|
MultiVarPowerSeriesRing<C> |
ring
Power series ring factory.
|
| Constructor and Description |
|---|
MultiVarPowerSeries(MultiVarPowerSeriesRing<C> ring,
MultiVarCoefficients<C> lazyCoeffs)
Constructor.
|
MultiVarPowerSeries(MultiVarPowerSeriesRing<C> ring,
MultiVarCoefficients<C> lazyCoeffs,
int trunc)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
MultiVarPowerSeries<C> |
abs()
Absolute value.
|
GenPolynomial<C> |
asPolynomial()
Get a GenPolynomial<C> from this.
|
C |
coefficient(ExpVector index)
Get coefficient.
|
int |
compareTo(MultiVarPowerSeries<C> ps)
Compare to.
|
MultiVarPowerSeries<C> |
copy()
Clone this power series.
|
MultiVarPowerSeries<C> |
differentiate(int r)
Differentiate with respect to variable r.
|
MultiVarPowerSeries<C> |
divide(MultiVarPowerSeries<C> ps)
Divide by another power series.
|
long |
ecart()
Ecart.
|
MultiVarPowerSeries<C>[] |
egcd(MultiVarPowerSeries<C> S)
Power series extended greatest common divisor.
|
boolean |
equals(java.lang.Object B)
Comparison with any other object.
|
C |
evaluate(java.util.List<C> a)
Evaluate at given point.
|
MultiVarPowerSeriesRing<C> |
factory()
Get the corresponding element factory.
|
MultiVarPowerSeries<C> |
gcd(MultiVarPowerSeries<C> ps)
Power series greatest common divisor.
|
int |
hashCode()
Hash code for this polynomial.
|
GenPolynomial<C> |
homogeneousPart(long tdeg)
Homogeneous part.
|
MultiVarPowerSeries<C> |
integrate(C c,
int r)
Integrate with respect to variable r and with given constant.
|
MultiVarPowerSeries<C> |
inverse()
Inverse power series.
|
boolean |
isONE()
Is power series one.
|
boolean |
isUnit()
Is unit.
|
boolean |
isZERO()
Is power series zero.
|
C |
leadingCoefficient()
Leading base coefficient.
|
MultiVarPowerSeries<C> |
map(UnaryFunctor<? super C,C> f)
Map a unary function to this power series.
|
MultiVarPowerSeries<C> |
monic()
Monic.
|
MultiVarPowerSeries<C> |
multiply(C a)
Multiply by coefficient.
|
MultiVarPowerSeries<C> |
multiply(C c,
ExpVector k)
Multiply by exponent vector and coefficient.
|
MultiVarPowerSeries<C> |
multiply(MultiVarPowerSeries<C> ps)
Multiply by another power series.
|
MultiVarPowerSeries<C> |
negate()
Negate.
|
int |
order()
Order.
|
ExpVector |
orderExpVector()
Order ExpVector.
|
java.util.Map.Entry<ExpVector,C> |
orderMonomial()
Order monomial.
|
MultiVarPowerSeries<C> |
prepend(C h,
int r)
Prepend a new leading coefficient.
|
MultiVarPowerSeries<C>[] |
quotientRemainder(MultiVarPowerSeries<C> S)
Quotient and remainder by division of this by S.
|
MultiVarPowerSeries<C> |
reductum()
Reductum.
|
MultiVarPowerSeries<C> |
reductum(int r)
Reductum.
|
MultiVarPowerSeries<C> |
remainder(MultiVarPowerSeries<C> ps)
Power series remainder.
|
MultiVarPowerSeries<C> |
select(Selector<? super C> sel)
Select coefficients.
|
int |
setTruncate(int t)
Set truncate.
|
MultiVarPowerSeries<C> |
shift(ExpVector k)
Shift coefficients.
|
MultiVarPowerSeries<C> |
shift(int k,
int r)
Shift coefficients.
|
MultiVarPowerSeries<C> |
shiftSelect(Selector<? super C> sel)
Shift select coefficients.
|
int |
signum()
Signum.
|
MultiVarPowerSeries<C> |
subtract(C c,
ExpVector k)
Subtract exponent vector and coefficient.
|
MultiVarPowerSeries<C> |
subtract(MultiVarPowerSeries<C> ps)
Subtract a another power series.
|
MultiVarPowerSeries<C> |
subtractZip(MultiVarPowerSeries<C> ps)
Subtraction of two power series, using zip().
|
MultiVarPowerSeries<C> |
sum(C c,
ExpVector k)
Sum exponent vector and coefficient.
|
MultiVarPowerSeries<C> |
sum(java.util.Map.Entry<ExpVector,C> m)
Sum monomial.
|
MultiVarPowerSeries<C> |
sum(MultiVarCoefficients<C> mvc)
Sum exponent vector and coefficient.
|
MultiVarPowerSeries<C> |
sum(MultiVarPowerSeries<C> ps)
Sum a another power series.
|
MultiVarPowerSeries<C> |
sumZip(MultiVarPowerSeries<C> ps)
Sum of two power series, using zip().
|
java.lang.String |
toScript()
Get a scripting compatible string representation.
|
java.lang.String |
toScriptFactory()
Get a scripting compatible string representation of the factory.
|
java.lang.String |
toString()
String representation of power series.
|
java.lang.String |
toString(int trunc)
To String with given truncate.
|
int |
truncate()
Truncate.
|
MultiVarPowerSeries<C> |
zip(BinaryFunctor<? super C,? super C,C> f,
MultiVarPowerSeries<C> ps)
Map a binary function to this and another power series.
|
clone, finalize, getClass, notify, notifyAll, wait, wait, waitleftDivide, leftRemainder, power, rightDivide, rightRemainder, twosidedDivide, twosidedRemainderpublic final MultiVarPowerSeriesRing<C extends RingElem<C>> ring
public MultiVarPowerSeries(MultiVarPowerSeriesRing<C> ring, MultiVarCoefficients<C> lazyCoeffs)
ring - power series ring.lazyCoeffs - generating function for coefficients.public MultiVarPowerSeries(MultiVarPowerSeriesRing<C> ring, MultiVarCoefficients<C> lazyCoeffs, int trunc)
ring - power series ring.lazyCoeffs - generating function for coefficients.trunc - truncate parameter for this power series.public MultiVarPowerSeriesRing<C> factory()
factory in interface Element<MultiVarPowerSeries<C extends RingElem<C>>>Element.factory()public MultiVarPowerSeries<C> copy()
public java.lang.String toString()
toString in class java.lang.ObjectObject.toString()public java.lang.String toString(int trunc)
trunc - truncate parameter for this power series.public java.lang.String toScript()
toScript in interface Element<MultiVarPowerSeries<C extends RingElem<C>>>Element.toScript()public java.lang.String toScriptFactory()
toScriptFactory in interface Element<MultiVarPowerSeries<C extends RingElem<C>>>Element.toScriptFactory()public C coefficient(ExpVector index)
index - number of requested coefficient.public GenPolynomial<C> homogeneousPart(long tdeg)
tdeg - requested degree.public GenPolynomial<C> asPolynomial()
public C leadingCoefficient()
public MultiVarPowerSeries<C> reductum(int r)
r - variable for taking the reductum.public MultiVarPowerSeries<C> prepend(C h, int r)
r - variable for the direction.h - new coefficient.public MultiVarPowerSeries<C> shift(int k, int r)
k - shift index.r - variable for the direction.public MultiVarPowerSeries<C> reductum()
public MultiVarPowerSeries<C> shift(ExpVector k)
k - shift ExpVector.public MultiVarPowerSeries<C> multiply(C c, ExpVector k)
k - shift ExpVector.c - coefficient multiplier.public MultiVarPowerSeries<C> sum(java.util.Map.Entry<ExpVector,C> m)
m - ExpVector , coeffcient pairpublic MultiVarPowerSeries<C> sum(C c, ExpVector k)
k - ExpVector.c - coefficient.public MultiVarPowerSeries<C> subtract(C c, ExpVector k)
k - ExpVector.c - coefficient.public MultiVarPowerSeries<C> sum(MultiVarCoefficients<C> mvc)
mvc - cached coefficients.public MultiVarPowerSeries<C> select(Selector<? super C> sel)
sel - selector functor.public MultiVarPowerSeries<C> shiftSelect(Selector<? super C> sel)
sel - selector functor.public MultiVarPowerSeries<C> map(UnaryFunctor<? super C,C> f)
f - evaluation functor.public MultiVarPowerSeries<C> zip(BinaryFunctor<? super C,? super C,C> f, MultiVarPowerSeries<C> ps)
f - evaluation functor with coefficients f(this(i),other(i)).ps - other power series.public MultiVarPowerSeries<C> sumZip(MultiVarPowerSeries<C> ps)
ps - other power series.public MultiVarPowerSeries<C> subtractZip(MultiVarPowerSeries<C> ps)
ps - other power series.public MultiVarPowerSeries<C> multiply(C a)
a - coefficient.public MultiVarPowerSeries<C> monic()
public MultiVarPowerSeries<C> negate()
negate in interface AbelianGroupElem<MultiVarPowerSeries<C extends RingElem<C>>>public MultiVarPowerSeries<C> abs()
abs in interface AbelianGroupElem<MultiVarPowerSeries<C extends RingElem<C>>>public int order()
public ExpVector orderExpVector()
public java.util.Map.Entry<ExpVector,C> orderMonomial()
public int truncate()
public int setTruncate(int t)
t - new truncate index.public long ecart()
public int signum()
signum in interface AbelianGroupElem<MultiVarPowerSeries<C extends RingElem<C>>>public int compareTo(MultiVarPowerSeries<C> ps)
compareTo in interface Element<MultiVarPowerSeries<C extends RingElem<C>>>compareTo in interface java.lang.Comparable<MultiVarPowerSeries<C extends RingElem<C>>>public boolean isZERO()
isZERO in interface AbelianGroupElem<MultiVarPowerSeries<C extends RingElem<C>>>AbelianGroupElem.isZERO()public boolean isONE()
isONE in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>MonoidElem.isONE()public boolean equals(java.lang.Object B)
public int hashCode()
public boolean isUnit()
isUnit in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>public MultiVarPowerSeries<C> sum(MultiVarPowerSeries<C> ps)
sum in interface AbelianGroupElem<MultiVarPowerSeries<C extends RingElem<C>>>ps - other power series.public MultiVarPowerSeries<C> subtract(MultiVarPowerSeries<C> ps)
subtract in interface AbelianGroupElem<MultiVarPowerSeries<C extends RingElem<C>>>ps - other power series.public MultiVarPowerSeries<C> multiply(MultiVarPowerSeries<C> ps)
multiply in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>ps - other power series.public MultiVarPowerSeries<C> inverse()
inverse in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>public MultiVarPowerSeries<C> divide(MultiVarPowerSeries<C> ps)
divide in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>ps - nonzero power series with invertible coefficient.public MultiVarPowerSeries<C> remainder(MultiVarPowerSeries<C> ps)
remainder in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>ps - nonzero power series with invertible leading coefficient.public MultiVarPowerSeries<C>[] quotientRemainder(MultiVarPowerSeries<C> S)
quotientRemainder in interface MonoidElem<MultiVarPowerSeries<C extends RingElem<C>>>S - a MultiVarPowerSeriespublic MultiVarPowerSeries<C> differentiate(int r)
r - variable for the direction.public MultiVarPowerSeries<C> integrate(C c, int r)
c - integration constant.r - variable for the direction.public MultiVarPowerSeries<C> gcd(MultiVarPowerSeries<C> ps)
public MultiVarPowerSeries<C>[] egcd(MultiVarPowerSeries<C> S)