C - coefficient typepublic abstract class WordReductionAbstract<C extends RingElem<C>> extends java.lang.Object implements WordReduction<C>
| Constructor and Description |
|---|
WordReductionAbstract()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
java.util.List<GenWordPolynomial<C>> |
irreducibleSet(java.util.List<GenWordPolynomial<C>> Pp)
Irreducible set.
|
boolean |
isNormalform(java.util.List<GenWordPolynomial<C>> Pp)
Is in Normalform.
|
boolean |
isNormalform(java.util.List<GenWordPolynomial<C>> Pp,
GenWordPolynomial<C> Ap)
Is in Normalform.
|
boolean |
isReducible(java.util.List<GenWordPolynomial<C>> Pp,
GenWordPolynomial<C> Ap)
Is reducible.
|
boolean |
isReductionNF(java.util.List<GenWordPolynomial<C>> lrow,
java.util.List<GenWordPolynomial<C>> rrow,
java.util.List<GenWordPolynomial<C>> Pp,
GenWordPolynomial<C> Ap,
GenWordPolynomial<C> Np)
Is reduction of normal form.
|
boolean |
isTopReducible(java.util.List<GenWordPolynomial<C>> P,
GenWordPolynomial<C> A)
Is top reducible.
|
java.util.List<GenWordPolynomial<C>> |
normalform(java.util.List<GenWordPolynomial<C>> Pp,
java.util.List<GenWordPolynomial<C>> Ap)
Normalform Set.
|
GenWordPolynomial<C> |
SPolynomial(C a,
Word l1,
GenWordPolynomial<C> A,
Word r1,
C b,
Word l2,
GenWordPolynomial<C> B,
Word r2)
S-Polynomials of non-commutative polynomials.
|
GenWordPolynomial<C> |
SPolynomial(Overlap ol,
C a,
GenWordPolynomial<C> A,
C b,
GenWordPolynomial<C> B)
S-Polynomials of non-commutative polynomials.
|
java.util.List<GenWordPolynomial<C>> |
SPolynomials(GenWordPolynomial<C> Ap,
GenWordPolynomial<C> Bp)
S-Polynomials of non-commutative polynomials.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitleftNormalform, leftNormalform, normalform, normalform, rightNormalform, rightNormalformpublic WordReductionAbstract()
public java.util.List<GenWordPolynomial<C>> SPolynomials(GenWordPolynomial<C> Ap, GenWordPolynomial<C> Bp)
SPolynomials in interface WordReduction<C extends RingElem<C>>Ap - word polynomial.Bp - word polynomial.public GenWordPolynomial<C> SPolynomial(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2)
SPolynomial in interface WordReduction<C extends RingElem<C>>a - leading base coefficient of B.l1 - word.A - word polynomial.r1 - word.b - leading base coefficient of A.l2 - word.B - word polynomial.r2 - word.public GenWordPolynomial<C> SPolynomial(Overlap ol, C a, GenWordPolynomial<C> A, C b, GenWordPolynomial<C> B)
ol - Overlap tuple.a - leading base coefficient of B.A - word polynomial.b - leading base coefficient of A.B - word polynomial.public java.util.List<GenWordPolynomial<C>> normalform(java.util.List<GenWordPolynomial<C>> Pp, java.util.List<GenWordPolynomial<C>> Ap)
normalform in interface WordReduction<C extends RingElem<C>>Ap - polynomial list.Pp - polynomial list.public boolean isTopReducible(java.util.List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A)
isTopReducible in interface WordReduction<C extends RingElem<C>>A - polynomial.P - polynomial list.public boolean isReducible(java.util.List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap)
isReducible in interface WordReduction<C extends RingElem<C>>Ap - polynomial.Pp - polynomial list.public boolean isNormalform(java.util.List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap)
isNormalform in interface WordReduction<C extends RingElem<C>>Ap - polynomial.Pp - polynomial list.public boolean isNormalform(java.util.List<GenWordPolynomial<C>> Pp)
isNormalform in interface WordReduction<C extends RingElem<C>>Pp - polynomial list.public java.util.List<GenWordPolynomial<C>> irreducibleSet(java.util.List<GenWordPolynomial<C>> Pp)
irreducibleSet in interface WordReduction<C extends RingElem<C>>Pp - polynomial list.public boolean isReductionNF(java.util.List<GenWordPolynomial<C>> lrow, java.util.List<GenWordPolynomial<C>> rrow, java.util.List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np)
isReductionNF in interface WordReduction<C extends RingElem<C>>lrow - left recording matrix.rrow - right recording matrix.Pp - a polynomial list for reduction.Ap - a polynomial.Np - nf(Pp,Ap), a normal form of Ap wrt. Pp.