C
- coefficient typepublic class SigReductionSeq<C extends RingElem<C>> extends java.lang.Object implements SigReduction<C>
Constructor and Description |
---|
SigReductionSeq()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
boolean |
isSigNormalform(java.util.List<SigPoly<C>> F,
java.util.List<SigPoly<C>> G,
SigPoly<C> A)
Is in top normalform.
|
boolean |
isSigReducible(java.util.List<SigPoly<C>> F,
java.util.List<SigPoly<C>> G,
SigPoly<C> A)
Is top reducible.
|
boolean |
isSigRedundant(java.util.List<SigPoly<C>> G,
SigPoly<C> A)
Is sigma redundant.
|
boolean |
isSigRedundantAlt(java.util.List<SigPoly<C>> G,
SigPoly<C> A)
Is sigma redundant, alternative algorithm.
|
java.util.List<SigPair<C>>[] |
minDegSubset(java.util.List<SigPair<C>> F)
Select signature polynomials of minimal degree and non minimal degree.
|
long |
minimalSigDegree(java.util.List<SigPair<C>> F)
Minimal degree of signatures.
|
java.util.List<GenPolynomial<C>> |
polys(java.util.List<SigPoly<C>> F)
Select polynomials.
|
java.util.List<GenPolynomial<C>> |
sigmas(java.util.List<SigPair<C>> F)
Select signatures.
|
SigPoly<C> |
sigNormalform(java.util.List<GenPolynomial<C>> F,
java.util.List<SigPoly<C>> G,
SigPoly<C> A)
Top normalform.
|
SigPoly<C> |
sigSemiNormalform(java.util.List<GenPolynomial<C>> F,
java.util.List<SigPoly<C>> G,
SigPoly<C> A)
Top semi-complete normalform.
|
java.util.List<SigPair<C>> |
sortSigma(java.util.List<SigPair<C>> F)
Sort signature polynomials according to the degree its signatures.
|
GenPolynomial<C> |
SPolynomial(SigPoly<C> A,
SigPoly<C> B)
S-Polynomial.
|
ExpVector[] |
SPolynomialExpVectorFactors(SigPoly<C> A,
SigPoly<C> B)
S-Polynomial factors.
|
GenPolynomial<C>[] |
SPolynomialFactors(SigPoly<C> A,
SigPoly<C> B)
S-Polynomial polynomial factors.
|
GenPolynomial<C> |
SPolynomialHalf(SigPoly<C> A,
SigPoly<C> B)
S-Polynomial half.
|
public SigReductionSeq()
public GenPolynomial<C> SPolynomial(SigPoly<C> A, SigPoly<C> B)
SPolynomial
in interface SigReduction<C extends RingElem<C>>
A
- polynomial.B
- polynomial.public ExpVector[] SPolynomialExpVectorFactors(SigPoly<C> A, SigPoly<C> B)
A
- monic polynomial.B
- monic polynomial.public GenPolynomial<C> SPolynomialHalf(SigPoly<C> A, SigPoly<C> B)
A
- monic polynomial.B
- monic polynomial.public GenPolynomial<C>[] SPolynomialFactors(SigPoly<C> A, SigPoly<C> B)
A
- monic polynomial.B
- monic polynomial.public boolean isSigReducible(java.util.List<SigPoly<C>> F, java.util.List<SigPoly<C>> G, SigPoly<C> A)
isSigReducible
in interface SigReduction<C extends RingElem<C>>
A
- polynomial.F
- polynomial list.G
- polynomial list.public boolean isSigNormalform(java.util.List<SigPoly<C>> F, java.util.List<SigPoly<C>> G, SigPoly<C> A)
isSigNormalform
in interface SigReduction<C extends RingElem<C>>
A
- polynomial.F
- polynomial list.G
- polynomial list.public boolean isSigRedundant(java.util.List<SigPoly<C>> G, SigPoly<C> A)
A
- polynomial.G
- polynomial list.public boolean isSigRedundantAlt(java.util.List<SigPoly<C>> G, SigPoly<C> A)
A
- polynomial.G
- polynomial list.public SigPoly<C> sigNormalform(java.util.List<GenPolynomial<C>> F, java.util.List<SigPoly<C>> G, SigPoly<C> A)
sigNormalform
in interface SigReduction<C extends RingElem<C>>
A
- polynomial.F
- polynomial list.G
- polynomial list.public SigPoly<C> sigSemiNormalform(java.util.List<GenPolynomial<C>> F, java.util.List<SigPoly<C>> G, SigPoly<C> A)
A
- polynomial.F
- polynomial list.G
- polynomial list.public java.util.List<GenPolynomial<C>> polys(java.util.List<SigPoly<C>> F)
F
- list of signature polynomials.public java.util.List<GenPolynomial<C>> sigmas(java.util.List<SigPair<C>> F)
F
- list of signature polynomials.public long minimalSigDegree(java.util.List<SigPair<C>> F)
F
- list of signature polynomials.public java.util.List<SigPair<C>>[] minDegSubset(java.util.List<SigPair<C>> F)
F
- list of signature polynomials.