public class WordIdeal<C extends GcdRingElem<C>> extends java.lang.Object implements java.lang.Comparable<WordIdeal<C>>, java.io.Serializable
Modifier and Type | Field and Description |
---|---|
protected WordGroebnerBaseAbstract<C> |
bb
Groebner base engine.
|
protected boolean |
isGB
Indicator if list is a Groebner Base.
|
protected java.util.List<GenWordPolynomial<C>> |
list
The data structure is a list of word polynomials.
|
protected WordReduction<C> |
red
Reduction engine.
|
protected GenWordPolynomialRing<C> |
ring
Reference to the word polynomial ring.
|
protected boolean |
testGB
Indicator if test has been performed if this is a Groebner Base.
|
Constructor and Description |
---|
WordIdeal(GenWordPolynomialRing<C> ring)
Constructor.
|
WordIdeal(GenWordPolynomialRing<C> ring,
java.util.List<GenWordPolynomial<C>> list)
Constructor.
|
WordIdeal(GenWordPolynomialRing<C> ring,
java.util.List<GenWordPolynomial<C>> list,
boolean gb)
Constructor.
|
WordIdeal(GenWordPolynomialRing<C> ring,
java.util.List<GenWordPolynomial<C>> list,
boolean gb,
WordGroebnerBaseAbstract<C> bb)
Constructor.
|
WordIdeal(GenWordPolynomialRing<C> ring,
java.util.List<GenWordPolynomial<C>> list,
boolean gb,
WordGroebnerBaseAbstract<C> bb,
WordReduction<C> red)
Constructor.
|
WordIdeal(GenWordPolynomialRing<C> ring,
java.util.List<GenWordPolynomial<C>> list,
WordGroebnerBaseAbstract<C> bb,
WordReduction<C> red)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
int |
commonZeroTest()
Ideal common zero test.
|
int |
compareTo(WordIdeal<C> L)
WordIdeal comparison.
|
boolean |
contains(GenWordPolynomial<C> b)
Word ideal containment.
|
boolean |
contains(java.util.List<GenWordPolynomial<C>> B)
Word ideal containment.
|
boolean |
contains(WordIdeal<C> B)
Word ideal containment.
|
WordIdeal<C> |
copy()
Clone this.
|
void |
doGB()
Do Groebner Base.
|
WordIdeal<C> |
eliminate(GenWordPolynomialRing<C> R) |
boolean |
equals(java.lang.Object b)
Comparison with any other object.
|
WordIdeal<C> |
GB()
Groebner Base.
|
java.util.List<GenWordPolynomial<C>> |
getList()
Get the List of GenWordPolynomials.
|
WordIdeal<C> |
getONE()
Get the one ideal.
|
GenWordPolynomialRing<C> |
getRing()
Get the GenWordPolynomialRing.
|
WordIdeal<C> |
getZERO()
Get the zero ideal.
|
int |
hashCode()
Hash code for this word ideal.
|
WordIdeal<C> |
intersect(GenWordPolynomialRing<C> R) |
WordIdeal<C> |
intersect(java.util.List<WordIdeal<C>> Bl) |
WordIdeal<C> |
intersect(WordIdeal<C> B) |
GenWordPolynomial<C> |
inverse(GenWordPolynomial<C> h)
Inverse for element modulo this ideal.
|
boolean |
isGB()
Test if this is a twosided Groebner base.
|
boolean |
isMaximal()
Test if this ideal is maximal.
|
boolean |
isONE()
Test if ONE is contained in the ideal.
|
boolean |
isUnit(GenWordPolynomial<C> h)
Test if element is a unit modulo this ideal.
|
boolean |
isZERO()
Test if ZERO ideal.
|
GenWordPolynomial<C> |
normalform(GenWordPolynomial<C> h)
Normalform for element.
|
java.util.List<GenWordPolynomial<C>> |
normalform(java.util.List<GenWordPolynomial<C>> L)
Normalform for list of word elements.
|
WordIdeal<C> |
power(int d)
Power.
|
WordIdeal<C> |
product(GenWordPolynomial<C> b)
Left product.
|
WordIdeal<C> |
product(WordIdeal<C> B)
Product.
|
WordIdeal<C> |
sum(GenWordPolynomial<C> b)
Word summation.
|
WordIdeal<C> |
sum(java.util.List<GenWordPolynomial<C>> L)
Word summation.
|
WordIdeal<C> |
sum(WordIdeal<C> B)
Word ideal summation.
|
java.lang.String |
toScript()
Get a scripting compatible string representation.
|
java.lang.String |
toString()
String representation of the word ideal.
|
java.util.List<java.lang.Long> |
univariateDegrees()
Univariate head term degrees.
|
protected java.util.List<GenWordPolynomial<C extends GcdRingElem<C>>> list
protected GenWordPolynomialRing<C extends GcdRingElem<C>> ring
protected boolean isGB
protected boolean testGB
protected final WordGroebnerBaseAbstract<C extends GcdRingElem<C>> bb
protected final WordReduction<C extends GcdRingElem<C>> red
public WordIdeal(GenWordPolynomialRing<C> ring)
ring
- word polynomial ringpublic WordIdeal(GenWordPolynomialRing<C> ring, java.util.List<GenWordPolynomial<C>> list)
ring
- word polynomial ringlist
- word polynomial listpublic WordIdeal(GenWordPolynomialRing<C> ring, java.util.List<GenWordPolynomial<C>> list, WordGroebnerBaseAbstract<C> bb, WordReduction<C> red)
ring
- word polynomial ringlist
- word polynomial listbb
- Groebner Base enginered
- Reduction enginepublic WordIdeal(GenWordPolynomialRing<C> ring, java.util.List<GenWordPolynomial<C>> list, boolean gb)
ring
- word polynomial ringlist
- word polynomial listgb
- true if list is known to be a Groebner Base, else falsepublic WordIdeal(GenWordPolynomialRing<C> ring, java.util.List<GenWordPolynomial<C>> list, boolean gb, WordGroebnerBaseAbstract<C> bb)
ring
- word polynomial ringlist
- word polynomial listgb
- true if list is known to be a Groebner Base, else falsebb
- Groebner Base enginepublic WordIdeal(GenWordPolynomialRing<C> ring, java.util.List<GenWordPolynomial<C>> list, boolean gb, WordGroebnerBaseAbstract<C> bb, WordReduction<C> red)
ring
- word polynomial ringlist
- word polynomial listgb
- true if list is known to be a Groebner Base, else falsebb
- Groebner Base enginered
- Reduction enginepublic java.util.List<GenWordPolynomial<C>> getList()
public GenWordPolynomialRing<C> getRing()
public java.lang.String toString()
toString
in class java.lang.Object
Object.toString()
public java.lang.String toScript()
Element.toScript()
public boolean equals(java.lang.Object b)
equals
in class java.lang.Object
Object.equals(java.lang.Object)
public int compareTo(WordIdeal<C> L)
compareTo
in interface java.lang.Comparable<WordIdeal<C extends GcdRingElem<C>>>
L
- other word ideal.public int hashCode()
hashCode
in class java.lang.Object
Object.hashCode()
public boolean isZERO()
public boolean isONE()
! id.isONE()
.public boolean isGB()
public void doGB()
public WordIdeal<C> GB()
public boolean contains(WordIdeal<C> B)
B
- word idealpublic boolean contains(GenWordPolynomial<C> b)
b
- word polynomialpublic boolean contains(java.util.List<GenWordPolynomial<C>> B)
B
- list of word polynomialspublic WordIdeal<C> sum(WordIdeal<C> B)
B
- word idealpublic WordIdeal<C> sum(GenWordPolynomial<C> b)
b
- word polynomialpublic WordIdeal<C> sum(java.util.List<GenWordPolynomial<C>> L)
L
- list of word polynomialspublic WordIdeal<C> product(WordIdeal<C> B)
B
- word idealpublic WordIdeal<C> product(GenWordPolynomial<C> b)
b
- word polynomialpublic WordIdeal<C> intersect(GenWordPolynomialRing<C> R)
public WordIdeal<C> eliminate(GenWordPolynomialRing<C> R)
public WordIdeal<C> power(int d)
d
- integerpublic GenWordPolynomial<C> normalform(GenWordPolynomial<C> h)
h
- word polynomialpublic java.util.List<GenWordPolynomial<C>> normalform(java.util.List<GenWordPolynomial<C>> L)
L
- word polynomial listpublic GenWordPolynomial<C> inverse(GenWordPolynomial<C> h)
h
- word polynomialpublic boolean isUnit(GenWordPolynomial<C> h)
h
- word polynomialpublic int commonZeroTest()
public boolean isMaximal()
public java.util.List<java.lang.Long> univariateDegrees()