| Interface | Description |
|---|---|
| CharacteristicSet<C extends GcdRingElem<C>> |
Characteristic Set interface.
|
| PseudoReduction<C extends RingElem<C>> |
Polynomial pseudo reduction interface.
|
| RPseudoReduction<C extends RegularRingElem<C>> |
Polynomial R pseudo reduction interface.
|
| RReduction<C extends RegularRingElem<C>> |
Polynomial R Reduction interface.
|
| Class | Description |
|---|---|
| CharacteristicSetSimple<C extends GcdRingElem<C>> |
Characteristic Set class acccording to the simple algorithm, where the
leading coefficients are not rereduced.
|
| CharacteristicSetWu<C extends GcdRingElem<C>> |
Characteristic Set class acccording to Wu.
|
| CharSetTest |
Chararacteristic set tests with JUnit.
|
| Examples |
Examples for Groebner base usage.
|
| GBFactory |
Groebner bases algorithms factory.
|
| GBFactoryTest |
GreatestCommonDivisor factory tests with JUnit.
|
| GroebnerBaseFGLM<C extends GcdRingElem<C>> |
Groebner Base sequential FGLM algorithm.
|
| GroebnerBaseFGLMExamples |
Groebner base FGLM examples with JUnit.
|
| GroebnerBaseFGLMTest |
Groebner base sequential tests with JUnit.
|
| GroebnerBasePartial<C extends GcdRingElem<C>> |
Partial Groebner Bases for subsets of variables.
|
| GroebnerBasePartTest |
Groebner base sequential tests with JUnit.
|
| GroebnerBasePseudoParallel<C extends GcdRingElem<C>> |
Groebner Base with pseudo reduction multi-threaded parallel algorithm.
|
| GroebnerBasePseudoParTest |
Groebner base pseudo reduction parallel tests with JUnit.
|
| GroebnerBasePseudoRecSeq<C extends GcdRingElem<C>> |
Groebner Base with pseudo reduction sequential algorithm for integral
function coefficients.
|
| GroebnerBasePseudoSeq<C extends GcdRingElem<C>> |
Groebner Base with pseudo reduction sequential algorithm.
|
| GroebnerBasePseudoSeqTest |
Groebner base pseudo reduction sequential tests with JUnit.
|
| GroebnerBaseRational<C extends BigRational> |
Groebner Base sequential algorithm for rational coefficients, fraction free
computation.
|
| GroebnerBaseSeqQuotient<C extends GcdRingElem<C>> |
Groebner Base sequential algorithm for rational function coefficients,
fraction free computation.
|
| GroebnerBaseSeqRationalTest |
Groebner base sequential rational fraction free tests with JUnit.
|
| MultiplicativeSet<C extends GcdRingElem<C>> |
Multiplicative set of polynomials. a, b in M implies a*b in M, 1 in M.
|
| MultiplicativeSetCoPrime<C extends GcdRingElem<C>> |
Multiplicative set of co-prime polynomials. a, b in M implies a*b in M, 1 in
M.
|
| MultiplicativeSetFactors<C extends GcdRingElem<C>> |
Multiplicative set of irreducible polynomials. a, b in M implies a*b in M, 1
in M.
|
| MultiplicativeSetSquarefree<C extends GcdRingElem<C>> |
Multiplicative set of squarefree and co-prime polynomials. a, b in M implies
a*b in M, 1 in M.
|
| MultiplicativeSetTest |
MultiplicativeSet tests with JUnit.
|
| OrderedRPairlist<C extends RegularRingElem<C>> |
Pair list management for R-Groebner bases.
|
| PolyGBUtil |
Package gbufd utilities.
|
| PolyGBUtilTest |
PolyGBUtil tests with JUnit.
|
| PseudoReductionEntry<C extends RingElem<C>> |
Polynomial reduction container.
|
| PseudoReductionPar<C extends RingElem<C>> |
Polynomial pseudo reduction sequential use algorithm.
|
| PseudoReductionSeq<C extends RingElem<C>> |
Polynomial pseudo reduction sequential use algorithm.
|
| ReductionTest |
Reduction tests with JUnit.
|
| RGroebnerBasePseudoSeq<C extends RegularRingElem<C>> |
Regular ring Groebner Base with pseudo reduction sequential algorithm.
|
| RGroebnerBasePseudoSeqTest |
R-Groebner base sequential tests with JUnit.
|
| RGroebnerBaseSeq<C extends RegularRingElem<C>> |
Regular ring Groebner Base sequential algorithm.
|
| RGroebnerBaseSeqTest |
R-Groebner base sequential tests with JUnit.
|
| RPseudoReductionSeq<C extends RegularRingElem<C>> |
Polynomial regular ring pseudo reduction sequential use algorithm.
|
| RReductionSeq<C extends RegularRingElem<C>> |
Polynomial Regular ring Reduction sequential use algorithm.
|
| Enum | Description |
|---|---|
| GBFactory.Algo |
Algorithm indicators: igb = integerGB, egb = e-GB, dgb = d-GB,
qgb = fraction coefficients GB, ffgb = fraction free GB.
|
This package contains classes for polynomial pseudo reduction and
Groebner bases using pseudo reduction
GroebnerBasePseudoSeq and
GroebnerBasePseudoRecSeq.
Groebner bases for polynomial rings over regular rings (direct
products of fields or integral domains) are implemented in
RGroebnerBaseSeq and
RGroebnerBasePseudoSeq.
Last modified: Fri Dec 24 15:00:40 CET 2010
$Id: package.html 3430 2010-12-24 14:01:57Z kredel $