C - coefficient typepublic class SolvableSyzygyAbstract<C extends RingElem<C>> extends java.lang.Object implements SolvableSyzygy<C>
| Modifier and Type | Field and Description |
|---|---|
protected BasicLinAlg<GenPolynomial<C>> |
blas
Linear algebra engine.
|
protected Reduction<C> |
red
Reduction engine.
|
protected SolvableReduction<C> |
sred
Solvable reduction engine.
|
| Constructor and Description |
|---|
SolvableSyzygyAbstract()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
isLeftZeroRelation(java.util.List<java.util.List<GenSolvablePolynomial<C>>> Z,
java.util.List<GenSolvablePolynomial<C>> F)
Test if left syzygy.
|
boolean |
isLeftZeroRelation(ModuleList<C> Z,
ModuleList<C> F)
Test if left sysygy of modules
|
boolean |
isRightZeroRelation(java.util.List<java.util.List<GenSolvablePolynomial<C>>> Z,
java.util.List<GenSolvablePolynomial<C>> F)
Test if right syzygy.
|
boolean |
isRightZeroRelation(ModuleList<C> Z,
ModuleList<C> F)
Test if right sysygy of modules
|
java.util.List<java.util.List<GenSolvablePolynomial<C>>> |
leftZeroRelations(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
Left syzygy for left Groebner base.
|
java.util.List<java.util.List<GenSolvablePolynomial<C>>> |
leftZeroRelations(java.util.List<GenSolvablePolynomial<C>> F)
Left syzygy for left Groebner base.
|
ModuleList<C> |
leftZeroRelations(ModuleList<C> M)
Left syzygy for left module Groebner base.
|
java.util.List<java.util.List<GenSolvablePolynomial<C>>> |
leftZeroRelationsArbitrary(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
Left syzygy module from arbitrary base.
|
java.util.List<java.util.List<GenSolvablePolynomial<C>>> |
leftZeroRelationsArbitrary(java.util.List<GenSolvablePolynomial<C>> F)
Left syzygy module from arbitrary base.
|
ModuleList<C> |
leftZeroRelationsArbitrary(ModuleList<C> M)
Left syzygy for arbitrary left module base.
|
java.util.List<edu.jas.gbmod.SolvResPart<C>> |
resolution(ModuleList<C> M)
Resolution of a module.
|
java.util.List |
resolution(PolynomialList<C> F)
Resolution of a polynomial list.
|
java.util.List<edu.jas.gbmod.SolvResPart<C>> |
resolutionArbitrary(ModuleList<C> M)
Resolution of a module.
|
java.util.List |
resolutionArbitrary(PolynomialList<C> F)
Resolution of a polynomial list.
|
java.util.List<java.util.List<GenSolvablePolynomial<C>>> |
rightZeroRelationsArbitrary(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
Right syzygy module from arbitrary base.
|
java.util.List<java.util.List<GenSolvablePolynomial<C>>> |
rightZeroRelationsArbitrary(java.util.List<GenSolvablePolynomial<C>> F)
Right syzygy module from arbitrary base.
|
protected SolvableReduction<C extends RingElem<C>> sred
protected BasicLinAlg<GenPolynomial<C extends RingElem<C>>> blas
public SolvableSyzygyAbstract()
public java.util.List<java.util.List<GenSolvablePolynomial<C>>> leftZeroRelations(java.util.List<GenSolvablePolynomial<C>> F)
leftZeroRelations in interface SolvableSyzygy<C extends RingElem<C>>F - a Groebner base.public java.util.List<java.util.List<GenSolvablePolynomial<C>>> leftZeroRelations(int modv, java.util.List<GenSolvablePolynomial<C>> F)
leftZeroRelations in interface SolvableSyzygy<C extends RingElem<C>>modv - number of module variables.F - a Groebner base.public ModuleList<C> leftZeroRelations(ModuleList<C> M)
leftZeroRelations in interface SolvableSyzygy<C extends RingElem<C>>M - a Groebner base.public boolean isLeftZeroRelation(java.util.List<java.util.List<GenSolvablePolynomial<C>>> Z, java.util.List<GenSolvablePolynomial<C>> F)
isLeftZeroRelation in interface SolvableSyzygy<C extends RingElem<C>>Z - list of sysygies.F - a polynomial list.public boolean isRightZeroRelation(java.util.List<java.util.List<GenSolvablePolynomial<C>>> Z, java.util.List<GenSolvablePolynomial<C>> F)
isRightZeroRelation in interface SolvableSyzygy<C extends RingElem<C>>Z - list of sysygies.F - a polynomial list.public boolean isLeftZeroRelation(ModuleList<C> Z, ModuleList<C> F)
isLeftZeroRelation in interface SolvableSyzygy<C extends RingElem<C>>Z - list of sysygies.F - a module list.public boolean isRightZeroRelation(ModuleList<C> Z, ModuleList<C> F)
isRightZeroRelation in interface SolvableSyzygy<C extends RingElem<C>>Z - list of sysygies.F - a module list.public java.util.List<edu.jas.gbmod.SolvResPart<C>> resolution(ModuleList<C> M)
resolution in interface SolvableSyzygy<C extends RingElem<C>>M - a module list of a Groebner basis.public java.util.List resolution(PolynomialList<C> F)
resolution in interface SolvableSyzygy<C extends RingElem<C>>F - a polynomial list of a Groebner basis.public java.util.List<edu.jas.gbmod.SolvResPart<C>> resolutionArbitrary(ModuleList<C> M)
resolutionArbitrary in interface SolvableSyzygy<C extends RingElem<C>>M - a module list of an arbitrary basis.public java.util.List resolutionArbitrary(PolynomialList<C> F)
resolutionArbitrary in interface SolvableSyzygy<C extends RingElem<C>>F - a polynomial list of an arbitrary basis.public java.util.List<java.util.List<GenSolvablePolynomial<C>>> leftZeroRelationsArbitrary(java.util.List<GenSolvablePolynomial<C>> F)
leftZeroRelationsArbitrary in interface SolvableSyzygy<C extends RingElem<C>>F - a solvable polynomial list.public java.util.List<java.util.List<GenSolvablePolynomial<C>>> leftZeroRelationsArbitrary(int modv, java.util.List<GenSolvablePolynomial<C>> F)
leftZeroRelationsArbitrary in interface SolvableSyzygy<C extends RingElem<C>>modv - number of module variables.F - a solvable polynomial list.public ModuleList<C> leftZeroRelationsArbitrary(ModuleList<C> M)
leftZeroRelationsArbitrary in interface SolvableSyzygy<C extends RingElem<C>>M - an arbitrary base.public java.util.List<java.util.List<GenSolvablePolynomial<C>>> rightZeroRelationsArbitrary(java.util.List<GenSolvablePolynomial<C>> F)
rightZeroRelationsArbitrary in interface SolvableSyzygy<C extends RingElem<C>>F - a solvable polynomial list.public java.util.List<java.util.List<GenSolvablePolynomial<C>>> rightZeroRelationsArbitrary(int modv, java.util.List<GenSolvablePolynomial<C>> F)
rightZeroRelationsArbitrary in interface SolvableSyzygy<C extends RingElem<C>>modv - number of module variables.F - a solvable polynomial list.