edu.jas.gb
Interface GroebnerBase<C extends RingElem<C>>

Type Parameters:
C - coefficient type
All Superinterfaces:
java.io.Serializable
All Known Implementing Classes:
DGroebnerBaseSeq, EGroebnerBaseSeq, GBProxy, GroebnerBaseAbstract, GroebnerBaseDistributed, GroebnerBaseDistributedHybrid, GroebnerBaseParallel, GroebnerBasePartial, GroebnerBasePseudoRecSeq, GroebnerBasePseudoSeq, GroebnerBaseSeq, GroebnerBaseSeqPairDistributed, GroebnerBaseSeqPairParallel, GroebnerBaseSeqPairSeq, RGroebnerBasePseudoSeq, RGroebnerBaseSeq

public interface GroebnerBase<C extends RingElem<C>>
extends java.io.Serializable

Groebner Bases interface. Defines methods for Groebner bases and GB test.

Author:
Heinz Kredel

Method Summary
 ExtendedGB<C> extGB(int modv, java.util.List<GenPolynomial<C>> F)
          Extended Groebner base using critical pair class.
 ExtendedGB<C> extGB(java.util.List<GenPolynomial<C>> F)
          Extended Groebner base using critical pair class.
 java.util.List<GenPolynomial<C>> GB(int modv, java.util.List<GenPolynomial<C>> F)
          Groebner base using pairlist class.
 java.util.List<GenPolynomial<C>> GB(java.util.List<GenPolynomial<C>> F)
          Groebner base using pairlist class.
 boolean isGB(int modv, java.util.List<GenPolynomial<C>> F)
          Groebner base test.
 boolean isGB(java.util.List<GenPolynomial<C>> F)
          Groebner base test.
 boolean isReductionMatrix(ExtendedGB<C> exgb)
          Test if reduction matrix.
 boolean isReductionMatrix(java.util.List<GenPolynomial<C>> F, java.util.List<GenPolynomial<C>> G, java.util.List<java.util.List<GenPolynomial<C>>> Mf, java.util.List<java.util.List<GenPolynomial<C>>> Mg)
          Test if reduction matrix.
 java.util.List<GenPolynomial<C>> minimalGB(java.util.List<GenPolynomial<C>> Gp)
          Minimal ordered groebner basis.
 

Method Detail

isGB

boolean isGB(java.util.List<GenPolynomial<C>> F)
Groebner base test.

Parameters:
F - polynomial list.
Returns:
true, if F is a Groebner base, else false.

isGB

boolean isGB(int modv,
             java.util.List<GenPolynomial<C>> F)
Groebner base test.

Parameters:
modv - module variable number.
F - polynomial list.
Returns:
true, if F is a Groebner base, else false.

GB

java.util.List<GenPolynomial<C>> GB(java.util.List<GenPolynomial<C>> F)
Groebner base using pairlist class.

Parameters:
F - polynomial list.
Returns:
GB(F) a Groebner base of F.

GB

java.util.List<GenPolynomial<C>> GB(int modv,
                                    java.util.List<GenPolynomial<C>> F)
Groebner base using pairlist class.

Parameters:
modv - module variable number.
F - polynomial list.
Returns:
GB(F) a Groebner base of F.

extGB

ExtendedGB<C> extGB(java.util.List<GenPolynomial<C>> F)
Extended Groebner base using critical pair class.

Parameters:
F - polynomial list.
Returns:
a container for a Groebner base G of F together with back-and-forth transformations.

extGB

ExtendedGB<C> extGB(int modv,
                    java.util.List<GenPolynomial<C>> F)
Extended Groebner base using critical pair class.

Parameters:
modv - module variable number.
F - polynomial list.
Returns:
a container for a Groebner base G of F together with back-and-forth transformations.

minimalGB

java.util.List<GenPolynomial<C>> minimalGB(java.util.List<GenPolynomial<C>> Gp)
Minimal ordered groebner basis.

Parameters:
Gp - a Groebner base.
Returns:
a reduced Groebner base of Gp.

isReductionMatrix

boolean isReductionMatrix(ExtendedGB<C> exgb)
Test if reduction matrix.

Parameters:
exgb - an ExtendedGB container.
Returns:
true, if exgb contains a reduction matrix, else false.

isReductionMatrix

boolean isReductionMatrix(java.util.List<GenPolynomial<C>> F,
                          java.util.List<GenPolynomial<C>> G,
                          java.util.List<java.util.List<GenPolynomial<C>>> Mf,
                          java.util.List<java.util.List<GenPolynomial<C>>> Mg)
Test if reduction matrix.

Parameters:
F - a polynomial list.
G - a Groebner base.
Mf - a possible reduction matrix.
Mg - a possible reduction matrix.
Returns:
true, if Mg and Mf are reduction matrices, else false.