edu.jas.gb
Class EReductionSeq<C extends RingElem<C>>

java.lang.Object
  extended by edu.jas.gb.ReductionAbstract<C>
      extended by edu.jas.gb.DReductionSeq<C>
          extended by edu.jas.gb.EReductionSeq<C>
Type Parameters:
C - coefficient type
All Implemented Interfaces:
DReduction<C>, EReduction<C>, Reduction<C>, java.io.Serializable

public class EReductionSeq<C extends RingElem<C>>
extends DReductionSeq<C>
implements EReduction<C>

Polynomial E-Reduction sequential use algorithm. Implements normalform.

Author:
Heinz Kredel
See Also:
Serialized Form

Constructor Summary
EReductionSeq()
          Constructor.
 
Method Summary
 java.util.List<GenPolynomial<C>> irreducibleSet(java.util.List<GenPolynomial<C>> Pp)
          Irreducible set.
 boolean isNormalform(java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
          Is in Normalform.
 boolean isTopReducible(java.util.List<GenPolynomial<C>> P, GenPolynomial<C> A)
          Is top reducible.
 GenPolynomial<C> normalform(java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
          Normalform using e-reduction.
 GenPolynomial<C> normalform(java.util.List<GenPolynomial<C>> row, java.util.List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap)
          Normalform with recording.
 
Methods inherited from class edu.jas.gb.DReductionSeq
criterion4, criterion4, GPolynomial, GPolynomial, SPolynomial
 
Methods inherited from class edu.jas.gb.ReductionAbstract
isNormalform, isReducible, isReductionNF, moduleCriterion, moduleCriterion, normalform, SPolynomial
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface edu.jas.gb.DReduction
GPolynomial, GPolynomial
 
Methods inherited from interface edu.jas.gb.Reduction
criterion4, criterion4, isNormalform, isReducible, isReductionNF, moduleCriterion, moduleCriterion, normalform, SPolynomial, SPolynomial
 

Constructor Detail

EReductionSeq

public EReductionSeq()
Constructor.

Method Detail

isTopReducible

public boolean isTopReducible(java.util.List<GenPolynomial<C>> P,
                              GenPolynomial<C> A)
Is top reducible.

Specified by:
isTopReducible in interface Reduction<C extends RingElem<C>>
Overrides:
isTopReducible in class DReductionSeq<C extends RingElem<C>>
Parameters:
A - polynomial.
P - polynomial list.
Returns:
true if A is top reducible with respect to P.

isNormalform

public boolean isNormalform(java.util.List<GenPolynomial<C>> Pp,
                            GenPolynomial<C> Ap)
Is in Normalform.

Specified by:
isNormalform in interface Reduction<C extends RingElem<C>>
Overrides:
isNormalform in class DReductionSeq<C extends RingElem<C>>
Parameters:
Ap - polynomial.
Pp - polynomial list.
Returns:
true if Ap is in normalform with respect to Pp.

normalform

public GenPolynomial<C> normalform(java.util.List<GenPolynomial<C>> Pp,
                                   GenPolynomial<C> Ap)
Normalform using e-reduction.

Specified by:
normalform in interface Reduction<C extends RingElem<C>>
Overrides:
normalform in class DReductionSeq<C extends RingElem<C>>
Parameters:
Ap - polynomial.
Pp - polynomial list.
Returns:
e-nf(Ap) with respect to Pp.

normalform

public GenPolynomial<C> normalform(java.util.List<GenPolynomial<C>> row,
                                   java.util.List<GenPolynomial<C>> Pp,
                                   GenPolynomial<C> Ap)
Normalform with recording.

Specified by:
normalform in interface Reduction<C extends RingElem<C>>
Overrides:
normalform in class DReductionSeq<C extends RingElem<C>>
Parameters:
row - recording matrix, is modified.
Pp - a polynomial list for reduction.
Ap - a polynomial.
Returns:
nf(Pp,Ap), the normal form of Ap wrt. Pp.

irreducibleSet

public java.util.List<GenPolynomial<C>> irreducibleSet(java.util.List<GenPolynomial<C>> Pp)
Irreducible set.

Specified by:
irreducibleSet in interface Reduction<C extends RingElem<C>>
Overrides:
irreducibleSet in class DReductionSeq<C extends RingElem<C>>
Parameters:
Pp - polynomial list.
Returns:
a list P of polynomials which are in normalform wrt. P.