edu.jas.application
Class Local<C extends GcdRingElem<C>>

java.lang.Object
  extended by edu.jas.application.Local<C>
All Implemented Interfaces:
AbelianGroupElem<Local<C>>, Element<Local<C>>, MonoidElem<Local<C>>, RingElem<Local<C>>, java.io.Serializable, java.lang.Cloneable, java.lang.Comparable<Local<C>>

public class Local<C extends GcdRingElem<C>>
extends java.lang.Object
implements RingElem<Local<C>>

Local ring element based on GenPolynomial with RingElem interface. Objects of this class are (nearly) immutable.

Author:
Heinz Kredel
See Also:
Serialized Form
Fix me
Not jet working because of monic GBs.

Field Summary
protected  GenPolynomial<C> den
          Denominator part of the element data structure.
protected  int isunit
          Flag to remember if this local element is a unit
protected  GenPolynomial<C> num
          Numerator part of the element data structure.
 LocalRing<C> ring
          Local class factory data structure.
 
Constructor Summary
  Local(LocalRing<C> r)
          The constructor creates a Local object from a ring factory.
  Local(LocalRing<C> r, GenPolynomial<C> n)
          The constructor creates a Local object from a ring factory and a numerator polynomial.
  Local(LocalRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d)
          The constructor creates a Local object from a ring factory and a numerator and denominator polynomial.
protected Local(LocalRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d, boolean isred)
          The constructor creates a Local object from a ring factory and a numerator and denominator polynomial.
 
Method Summary
 Local<C> abs()
          Local absolute value.
 Local<C> clone()
          Clone this.
 int compareTo(Local<C> b)
          Local comparison.
 Local<C> divide(Local<C> S)
          Local division.
 Local<C>[] egcd(Local<C> b)
          Extended greatest common divisor.
 boolean equals(java.lang.Object b)
          Comparison with any other object.
 LocalRing<C> factory()
          Get the corresponding element factory.
protected  GenPolynomial<C> gcd(GenPolynomial<C> n, GenPolynomial<C> d)
          Greatest common divisor.
 Local<C> gcd(Local<C> b)
          Greatest common divisor.
 int hashCode()
          Hash code for this local.
 Local<C> inverse()
          Local inverse.
 boolean isONE()
          Is Local one.
 boolean isUnit()
          Is Local unit.
 boolean isZERO()
          Is Local zero.
protected  GenPolynomial<C> lcm(GenPolynomial<C> n, GenPolynomial<C> d)
          Least common multiple.
 Local<C> monic()
          Local monic.
 Local<C> multiply(Local<C> S)
          Local multiplication.
 Local<C> negate()
          Local negate.
 Local<C> remainder(Local<C> S)
          Local remainder.
 int signum()
          Local signum.
 Local<C> subtract(Local<C> S)
          Local subtraction.
 Local<C> sum(Local<C> S)
          Local summation.
 java.lang.String toScript()
          Get a scripting compatible string representation.
 java.lang.String toScriptFactory()
          Get a scripting compatible string representation of the factory.
 java.lang.String toString()
          Get the String representation as RingElem.
 
Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait
 

Field Detail

ring

public final LocalRing<C extends GcdRingElem<C>> ring
Local class factory data structure.


num

protected final GenPolynomial<C extends GcdRingElem<C>> num
Numerator part of the element data structure.


den

protected final GenPolynomial<C extends GcdRingElem<C>> den
Denominator part of the element data structure.


isunit

protected int isunit
Flag to remember if this local element is a unit. -1 is unknown, 1 is unit, 0 not a unit.

Constructor Detail

Local

public Local(LocalRing<C> r)
The constructor creates a Local object from a ring factory.

Parameters:
r - ring factory.

Local

public Local(LocalRing<C> r,
             GenPolynomial<C> n)
The constructor creates a Local object from a ring factory and a numerator polynomial. The denominator is assumed to be 1.

Parameters:
r - ring factory.
n - numerator polynomial.

Local

public Local(LocalRing<C> r,
             GenPolynomial<C> n,
             GenPolynomial<C> d)
The constructor creates a Local object from a ring factory and a numerator and denominator polynomial.

Parameters:
r - ring factory.
n - numerator polynomial.
d - denominator polynomial.

Local

protected Local(LocalRing<C> r,
                GenPolynomial<C> n,
                GenPolynomial<C> d,
                boolean isred)
The constructor creates a Local object from a ring factory and a numerator and denominator polynomial.

Parameters:
r - ring factory.
n - numerator polynomial.
d - denominator polynomial.
isred - true if gcd(n,d) == 1, else false.
Method Detail

lcm

protected GenPolynomial<C> lcm(GenPolynomial<C> n,
                               GenPolynomial<C> d)
Least common multiple.

Parameters:
n - first polynomial.
d - second polynomial.
Returns:
lcm(n,d)

gcd

protected GenPolynomial<C> gcd(GenPolynomial<C> n,
                               GenPolynomial<C> d)
Greatest common divisor. Just for fun, is not efficient.

Parameters:
n - first polynomial.
d - second polynomial.
Returns:
gcd(n,d)

factory

public LocalRing<C> factory()
Get the corresponding element factory.

Specified by:
factory in interface Element<Local<C extends GcdRingElem<C>>>
Returns:
factory for this Element.
See Also:
Element.factory()

clone

public Local<C> clone()
Clone this.

Overrides:
clone in class java.lang.Object
See Also:
Object.clone()

isZERO

public boolean isZERO()
Is Local zero.

Specified by:
isZERO in interface AbelianGroupElem<Local<C extends GcdRingElem<C>>>
Returns:
If this is 0 then true is returned, else false.
See Also:
AbelianGroupElem.isZERO()

isONE

public boolean isONE()
Is Local one.

Specified by:
isONE in interface MonoidElem<Local<C extends GcdRingElem<C>>>
Returns:
If this is 1 then true is returned, else false.
See Also:
MonoidElem.isONE()

isUnit

public boolean isUnit()
Is Local unit.

Specified by:
isUnit in interface MonoidElem<Local<C extends GcdRingElem<C>>>
Returns:
If this is a unit then true is returned, else false.
See Also:
MonoidElem.isUnit()

toString

public java.lang.String toString()
Get the String representation as RingElem.

Overrides:
toString in class java.lang.Object
See Also:
Object.toString()

toScript

public java.lang.String toScript()
Get a scripting compatible string representation.

Specified by:
toScript in interface Element<Local<C extends GcdRingElem<C>>>
Returns:
script compatible representation for this Element.
See Also:
Element.toScript()

toScriptFactory

public java.lang.String toScriptFactory()
Get a scripting compatible string representation of the factory.

Specified by:
toScriptFactory in interface Element<Local<C extends GcdRingElem<C>>>
Returns:
script compatible representation for this ElemFactory.
See Also:
Element.toScriptFactory()

compareTo

public int compareTo(Local<C> b)
Local comparison.

Specified by:
compareTo in interface Element<Local<C extends GcdRingElem<C>>>
Specified by:
compareTo in interface java.lang.Comparable<Local<C extends GcdRingElem<C>>>
Parameters:
b - Local.
Returns:
sign(this-b).

equals

public boolean equals(java.lang.Object b)
Comparison with any other object.

Specified by:
equals in interface Element<Local<C extends GcdRingElem<C>>>
Overrides:
equals in class java.lang.Object
Returns:
true if this is equal to b, else false.
See Also:
Object.equals(java.lang.Object)

hashCode

public int hashCode()
Hash code for this local.

Specified by:
hashCode in interface Element<Local<C extends GcdRingElem<C>>>
Overrides:
hashCode in class java.lang.Object
Returns:
the hashCode.
See Also:
Object.hashCode()

abs

public Local<C> abs()
Local absolute value.

Specified by:
abs in interface AbelianGroupElem<Local<C extends GcdRingElem<C>>>
Returns:
the absolute value of this.
See Also:
AbelianGroupElem.abs()

sum

public Local<C> sum(Local<C> S)
Local summation.

Specified by:
sum in interface AbelianGroupElem<Local<C extends GcdRingElem<C>>>
Parameters:
S - Local.
Returns:
this+S.

negate

public Local<C> negate()
Local negate.

Specified by:
negate in interface AbelianGroupElem<Local<C extends GcdRingElem<C>>>
Returns:
-this.
See Also:
AbelianGroupElem.negate()

signum

public int signum()
Local signum.

Specified by:
signum in interface AbelianGroupElem<Local<C extends GcdRingElem<C>>>
Returns:
signum(this).
See Also:
AbelianGroupElem.signum()

subtract

public Local<C> subtract(Local<C> S)
Local subtraction.

Specified by:
subtract in interface AbelianGroupElem<Local<C extends GcdRingElem<C>>>
Parameters:
S - Local.
Returns:
this-S.

divide

public Local<C> divide(Local<C> S)
Local division.

Specified by:
divide in interface MonoidElem<Local<C extends GcdRingElem<C>>>
Parameters:
S - Local.
Returns:
this/S.

inverse

public Local<C> inverse()
Local inverse.

Specified by:
inverse in interface MonoidElem<Local<C extends GcdRingElem<C>>>
Returns:
S with S = 1/this if defined.
See Also:
MonoidElem.inverse()

remainder

public Local<C> remainder(Local<C> S)
Local remainder.

Specified by:
remainder in interface MonoidElem<Local<C extends GcdRingElem<C>>>
Parameters:
S - Local.
Returns:
this - (this/S)*S.

multiply

public Local<C> multiply(Local<C> S)
Local multiplication.

Specified by:
multiply in interface MonoidElem<Local<C extends GcdRingElem<C>>>
Parameters:
S - Local.
Returns:
this*S.

monic

public Local<C> monic()
Local monic.

Returns:
this with monic value part.

gcd

public Local<C> gcd(Local<C> b)
Greatest common divisor.

Specified by:
gcd in interface RingElem<Local<C extends GcdRingElem<C>>>
Parameters:
b - other element.
Returns:
gcd(this,b).

egcd

public Local<C>[] egcd(Local<C> b)
Extended greatest common divisor. Note: Not implemented, throws UnsupportedOperationException.

Specified by:
egcd in interface RingElem<Local<C extends GcdRingElem<C>>>
Parameters:
b - other element.
Returns:
[ gcd(this,b), c1, c2 ] with c1*this + c2*b = gcd(this,b).