|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.jas.application.Ideal<C>
public class Ideal<C extends GcdRingElem<C>>
Ideal implements some methods for ideal arithmetic, for example intersection, quotient and zero and positive dimensional ideal decomposition.
Field Summary | |
---|---|
protected GroebnerBaseAbstract<C> |
bb
Groebner base engine. |
protected SquarefreeAbstract<C> |
engine
Squarefree decomposition engine. |
protected boolean |
isGB
Indicator if list is a Groebner Base. |
protected boolean |
isTopt
Indicator if list has optimized term order. |
protected PolynomialList<C> |
list
The data structure is a PolynomialList. |
protected Reduction<C> |
red
Reduction engine. |
protected boolean |
testGB
Indicator if test has been performed if this is a Groebner Base. |
Constructor Summary | |
---|---|
Ideal(GenPolynomialRing<C> ring)
Constructor. |
|
Ideal(GenPolynomialRing<C> ring,
java.util.List<GenPolynomial<C>> F)
Constructor. |
|
Ideal(GenPolynomialRing<C> ring,
java.util.List<GenPolynomial<C>> F,
boolean gb)
Constructor. |
|
Ideal(GenPolynomialRing<C> ring,
java.util.List<GenPolynomial<C>> F,
boolean gb,
boolean topt)
Constructor. |
|
Ideal(PolynomialList<C> list)
Constructor. |
|
Ideal(PolynomialList<C> list,
boolean gb)
Constructor. |
|
Ideal(PolynomialList<C> list,
boolean gb,
boolean topt)
Constructor. |
|
Ideal(PolynomialList<C> list,
boolean gb,
boolean topt,
GroebnerBaseAbstract<C> bb)
Constructor. |
|
Ideal(PolynomialList<C> list,
boolean gb,
boolean topt,
GroebnerBaseAbstract<C> bb,
Reduction<C> red)
Constructor. |
|
Ideal(PolynomialList<C> list,
boolean gb,
GroebnerBaseAbstract<C> bb)
Constructor. |
|
Ideal(PolynomialList<C> list,
boolean gb,
GroebnerBaseAbstract<C> bb,
Reduction<C> red)
Constructor. |
|
Ideal(PolynomialList<C> list,
GroebnerBaseAbstract<C> bb,
Reduction<C> red)
Constructor. |
Method Summary | ||
---|---|---|
Ideal<C> |
clone()
Clone this. |
|
int |
commonZeroTest()
Ideal common zero test. |
|
int |
compareTo(Ideal<C> L)
Ideal list comparison. |
|
java.util.List<GenPolynomial<C>> |
constructUnivariate()
Construct univariate polynomials of minimal degree in all variables in zero dimensional ideal(G). |
|
GenPolynomial<C> |
constructUnivariate(int i)
Construct univariate polynomial of minimal degree in variable i in zero dimensional ideal(G). |
|
GenPolynomial<C> |
constructUnivariate(int i,
java.util.List<GenPolynomial<C>> G)
Construct univariate polynomial of minimal degree in variable i of a zero dimensional ideal(G). |
|
boolean |
contains(GenPolynomial<C> b)
Ideal containment. |
|
boolean |
contains(Ideal<C> B)
Ideal containment. |
|
protected boolean |
contains(int[] v,
java.util.Set<java.lang.Integer> H)
Set containment. is v \subset H. |
|
boolean |
contains(java.util.List<GenPolynomial<C>> B)
Ideal containment. |
|
protected boolean |
containsHT(java.util.Set<java.lang.Integer> H,
java.util.List<GenPolynomial<C>> G)
Ideal head term containment test. |
|
static
|
contraction(IdealWithUniv<Quotient<C>> eid)
Ideal contraction. |
|
java.util.List<IdealWithUniv<C>> |
decomposition()
Ideal irreducible decompostition. |
|
Dimension |
dimension()
Ideal dimension. |
|
protected java.util.Set<java.util.Set<java.lang.Integer>> |
dimension(java.util.Set<java.lang.Integer> S,
java.util.Set<java.lang.Integer> U,
java.util.Set<java.util.Set<java.lang.Integer>> M)
Ideal dimension. |
|
void |
doGB()
Do Groebner Base. compute the Groebner Base for this ideal. |
|
void |
doToptimize()
Optimize the term order. |
|
Ideal<C> |
eliminate(GenPolynomialRing<C> R)
Eliminate. |
|
Ideal<C> |
eliminate(java.lang.String... ename)
Eliminate. |
|
boolean |
equals(java.lang.Object b)
Comparison with any other object. |
|
IdealWithUniv<Quotient<C>> |
extension(GenPolynomialRing<C> efac)
Ideal extension. |
|
IdealWithUniv<Quotient<C>> |
extension(QuotientRing<C> qfac)
Ideal extension. |
|
IdealWithUniv<Quotient<C>> |
extension(java.lang.String... vars)
Ideal extension. |
|
Ideal<C> |
GB()
Groebner Base. |
|
java.util.List<GenPolynomial<C>> |
getList()
Get the List of GenPolynomials. |
|
Ideal<C> |
getONE()
Get the one ideal. |
|
GenPolynomialRing<C> |
getRing()
Get the GenPolynomialRing. |
|
Ideal<C> |
getZERO()
Get the zero ideal. |
|
int |
hashCode()
Hash code for this ideal. |
|
Ideal<C> |
infiniteQuotient(GenPolynomial<C> h)
Infinite quotient. |
|
Ideal<C> |
infiniteQuotient(Ideal<C> H)
Infinite Quotient. |
|
int |
infiniteQuotientExponent(GenPolynomial<C> h,
Ideal<C> Q)
Infinite quotient exponent. |
|
Ideal<C> |
infiniteQuotientOld(GenPolynomial<C> h)
Infinite quotient. |
|
Ideal<C> |
infiniteQuotientRab(GenPolynomial<C> h)
Infinite quotient. |
|
Ideal<C> |
infiniteQuotientRab(Ideal<C> H)
Infinite Quotient. |
|
Ideal<C> |
intersect(GenPolynomialRing<C> R)
Intersection. |
|
Ideal<C> |
intersect(Ideal<C> B)
Intersection. |
|
Ideal<C> |
intersect(java.util.List<Ideal<C>> Bl)
Intersection. |
|
GenPolynomial<C> |
inverse(GenPolynomial<C> h)
Inverse for element modulo this ideal. |
|
boolean |
isDecomposition(java.util.List<IdealWithUniv<C>> L)
Test for ideal decompostition. |
|
boolean |
isGB()
Test if this is a Groebner base. |
|
boolean |
isMaximal()
Test if this ideal is maximal. |
|
boolean |
isNormalPositionFor(int i,
int j)
Test if this ideal is in normal position for variables i and j. |
|
boolean |
isONE()
Test if ONE is contained in the ideal. |
|
boolean |
isPrimaryDecomposition(java.util.List<PrimaryComponent<C>> L)
Test for primary ideal decompostition. |
|
boolean |
isRadicalMember(GenPolynomial<C> h)
Radical membership test. |
|
boolean |
isUnit(GenPolynomial<C> h)
Test if element is a unit modulo this ideal. |
|
boolean |
isZERO()
Test if ZERO ideal. |
|
boolean |
isZeroDimDecomposition(java.util.List<IdealWithUniv<C>> L)
Test for zero dimensional ideal decompostition. |
|
boolean |
isZeroDimRadical()
Test for Zero dimensional radical. |
|
GenPolynomial<C> |
normalform(GenPolynomial<C> h)
Normalform for element. |
|
java.util.List<GenPolynomial<C>> |
normalform(java.util.List<GenPolynomial<C>> L)
Normalform for list of elements. |
|
IdealWithUniv<C> |
normalPositionFor(int i,
int j,
java.util.List<GenPolynomial<C>> og)
Compute normal position for variables i and j. |
|
int[] |
normalPositionIndex2Vars()
Normal position index, separate for polynomials with more than 2 variables. |
|
int[] |
normalPositionIndexUnivars()
Normal position index, separate multiple univariate polynomials. |
|
IdealWithUniv<C> |
permContraction(IdealWithUniv<Quotient<C>> eideal)
Ideal contraction and permutation. |
|
static
|
permutation(GenPolynomialRing<C> oring,
IdealWithUniv<C> Cont)
Ideal permutation. |
|
Ideal<C> |
power(int d)
Power. |
|
java.util.List<PrimaryComponent<C>> |
primaryDecomposition()
Ideal primary decompostition. |
|
Ideal<C> |
primaryIdeal(Ideal<C> P)
Zero dimensional ideal associated primary ideal. |
|
java.util.List<IdealWithUniv<C>> |
primeDecomposition()
Ideal prime decompostition. |
|
Ideal<C> |
product(Ideal<C> B)
Product. |
|
Ideal<C> |
quotient(GenPolynomial<C> h)
Quotient. |
|
Ideal<C> |
quotient(Ideal<C> H)
Quotient. |
|
Ideal<C> |
radical()
Ideal radical. |
|
java.util.List<IdealWithUniv<C>> |
radicalDecomposition()
Ideal radical decompostition. |
|
Ideal<C> |
squarefree()
Radical approximation. |
|
Ideal<C> |
sum(GenPolynomial<C> b)
Summation. |
|
Ideal<C> |
sum(Ideal<C> B)
Summation. |
|
Ideal<C> |
sum(java.util.List<GenPolynomial<C>> L)
Summation. |
|
java.lang.String |
toScript()
Get a scripting compatible string representation. |
|
java.lang.String |
toString()
String representation of the ideal. |
|
java.util.List<java.lang.Long> |
univariateDegrees()
Univariate head term degrees. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimDecomposition()
Zero dimensional ideal irreducible decompostition. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimDecompositionExtension(java.util.List<GenPolynomial<C>> upol,
java.util.List<GenPolynomial<C>> og)
Zero dimensional ideal irreducible decompostition extension. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimElimination(java.util.List<IdealWithUniv<C>> pdec)
Zero dimensional ideal elimination to original ring. |
|
java.util.List<PrimaryComponent<C>> |
zeroDimPrimaryDecomposition()
Zero dimensional ideal primary decompostition. |
|
java.util.List<PrimaryComponent<C>> |
zeroDimPrimaryDecomposition(java.util.List<IdealWithUniv<C>> pdec)
Zero dimensional ideal primary decompostition. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimPrimeDecomposition()
Zero dimensional ideal prime decompostition. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimPrimeDecompositionFE()
Zero dimensional ideal prime decompostition, with field extension. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimRadicalDecomposition()
Zero dimensional radical decompostition. |
|
java.util.List<IdealWithUniv<C>> |
zeroDimRootDecomposition()
Zero dimensional ideal decompostition for real roots. |
Methods inherited from class java.lang.Object |
---|
finalize, getClass, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
protected PolynomialList<C extends GcdRingElem<C>> list
protected boolean isGB
protected boolean testGB
protected boolean isTopt
protected final GroebnerBaseAbstract<C extends GcdRingElem<C>> bb
protected final Reduction<C extends GcdRingElem<C>> red
protected final SquarefreeAbstract<C extends GcdRingElem<C>> engine
Constructor Detail |
---|
public Ideal(GenPolynomialRing<C> ring)
ring
- polynomial ringpublic Ideal(GenPolynomialRing<C> ring, java.util.List<GenPolynomial<C>> F)
ring
- polynomial ringF
- list of polynomialspublic Ideal(GenPolynomialRing<C> ring, java.util.List<GenPolynomial<C>> F, boolean gb)
ring
- polynomial ringF
- list of polynomialsgb
- true if F is known to be a Groebner Base, else falsepublic Ideal(GenPolynomialRing<C> ring, java.util.List<GenPolynomial<C>> F, boolean gb, boolean topt)
ring
- polynomial ringF
- list of polynomialsgb
- true if F is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsepublic Ideal(PolynomialList<C> list)
list
- polynomial listpublic Ideal(PolynomialList<C> list, GroebnerBaseAbstract<C> bb, Reduction<C> red)
list
- polynomial listbb
- Groebner Base enginered
- Reduction enginepublic Ideal(PolynomialList<C> list, boolean gb)
list
- polynomial listgb
- true if list is known to be a Groebner Base, else falsepublic Ideal(PolynomialList<C> list, boolean gb, boolean topt)
list
- polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsepublic Ideal(PolynomialList<C> list, boolean gb, GroebnerBaseAbstract<C> bb, Reduction<C> red)
list
- polynomial listgb
- true if list is known to be a Groebner Base, else falsebb
- Groebner Base enginered
- Reduction enginepublic Ideal(PolynomialList<C> list, boolean gb, GroebnerBaseAbstract<C> bb)
list
- polynomial listgb
- true if list is known to be a Groebner Base, else falsebb
- Groebner Base enginepublic Ideal(PolynomialList<C> list, boolean gb, boolean topt, GroebnerBaseAbstract<C> bb)
list
- polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsebb
- Groebner Base enginepublic Ideal(PolynomialList<C> list, boolean gb, boolean topt, GroebnerBaseAbstract<C> bb, Reduction<C> red)
list
- polynomial listgb
- true if list is known to be a Groebner Base, else falsetopt
- true if term order is optimized, else falsebb
- Groebner Base enginered
- Reduction engineMethod Detail |
---|
public Ideal<C> clone()
clone
in class java.lang.Object
public java.util.List<GenPolynomial<C>> getList()
public GenPolynomialRing<C> getRing()
public Ideal<C> getZERO()
public Ideal<C> getONE()
public java.lang.String toString()
toString
in class java.lang.Object
Object.toString()
public java.lang.String toScript()
Element.toScript()
public boolean equals(java.lang.Object b)
equals
in class java.lang.Object
Object.equals(java.lang.Object)
public int compareTo(Ideal<C> L)
compareTo
in interface java.lang.Comparable<Ideal<C extends GcdRingElem<C>>>
L
- other Ideal.
public int hashCode()
hashCode
in class java.lang.Object
Object.hashCode()
public boolean isZERO()
public boolean isONE()
! id.isONE()
.
public void doToptimize()
public boolean isGB()
public void doGB()
public Ideal<C> GB()
public boolean contains(Ideal<C> B)
B
- ideal
public boolean contains(GenPolynomial<C> b)
b
- polynomial
public boolean contains(java.util.List<GenPolynomial<C>> B)
B
- list of polynomials
public Ideal<C> sum(Ideal<C> B)
B
- ideal
public Ideal<C> sum(GenPolynomial<C> b)
b
- polynomial
public Ideal<C> sum(java.util.List<GenPolynomial<C>> L)
L
- list of polynomials
public Ideal<C> product(Ideal<C> B)
B
- ideal
public Ideal<C> intersect(java.util.List<Ideal<C>> Bl)
Bl
- list of ideals
public Ideal<C> intersect(Ideal<C> B)
B
- ideal
public Ideal<C> intersect(GenPolynomialRing<C> R)
R
- polynomial ring
public Ideal<C> eliminate(GenPolynomialRing<C> R)
R
- polynomial ring
public Ideal<C> eliminate(java.lang.String... ename)
ename
- variables for the elimination ring.
public Ideal<C> quotient(GenPolynomial<C> h)
h
- polynomial
public Ideal<C> quotient(Ideal<C> H)
H
- ideal
public Ideal<C> infiniteQuotientRab(GenPolynomial<C> h)
h
- polynomial
public int infiniteQuotientExponent(GenPolynomial<C> h, Ideal<C> Q)
h
- polynomialQ
- quotient this : h^\infinity
public Ideal<C> infiniteQuotient(GenPolynomial<C> h)
h
- polynomial
public boolean isRadicalMember(GenPolynomial<C> h)
h
- polynomial
public Ideal<C> infiniteQuotientOld(GenPolynomial<C> h)
h
- polynomial
public Ideal<C> infiniteQuotient(Ideal<C> H)
H
- ideal
public Ideal<C> infiniteQuotientRab(Ideal<C> H)
H
- ideal
public Ideal<C> power(int d)
d
- integer
public GenPolynomial<C> normalform(GenPolynomial<C> h)
h
- polynomial
public java.util.List<GenPolynomial<C>> normalform(java.util.List<GenPolynomial<C>> L)
L
- polynomial list
public GenPolynomial<C> inverse(GenPolynomial<C> h)
h
- polynomial
public boolean isUnit(GenPolynomial<C> h)
h
- polynomial
public Ideal<C> squarefree()
public int commonZeroTest()
public boolean isMaximal()
public java.util.List<java.lang.Long> univariateDegrees()
public Dimension dimension()
protected java.util.Set<java.util.Set<java.lang.Integer>> dimension(java.util.Set<java.lang.Integer> S, java.util.Set<java.lang.Integer> U, java.util.Set<java.util.Set<java.lang.Integer>> M)
S
- is a set of independent variables.U
- is a set of variables of unknown status.M
- is a list of maximal sets of independent variables.
protected boolean containsHT(java.util.Set<java.lang.Integer> H, java.util.List<GenPolynomial<C>> G)
G
- list of polynomials.H
- index set.
protected boolean contains(int[] v, java.util.Set<java.lang.Integer> H)
v
- index array.H
- index set.
public java.util.List<GenPolynomial<C>> constructUnivariate()
public GenPolynomial<C> constructUnivariate(int i)
i
- variable index.
public GenPolynomial<C> constructUnivariate(int i, java.util.List<GenPolynomial<C>> G)
i
- variable index.G
- list of polynomials, a monic reduced Gröbner base of a zero
dimensional ideal.
public java.util.List<IdealWithUniv<C>> zeroDimRadicalDecomposition()
public boolean isZeroDimRadical()
public java.util.List<IdealWithUniv<C>> zeroDimDecomposition()
public java.util.List<IdealWithUniv<C>> zeroDimDecompositionExtension(java.util.List<GenPolynomial<C>> upol, java.util.List<GenPolynomial<C>> og)
upol
- list of univariate polynomialsog
- list of other generators for the ideal
public boolean isZeroDimDecomposition(java.util.List<IdealWithUniv<C>> L)
L
- intersection of ideals G_i with ideal(G) subseteq cap_i(
ideal(G_i) ) and all minimal univariate polynomials of all G_i
are irreducible
public IdealWithUniv<C> normalPositionFor(int i, int j, java.util.List<GenPolynomial<C>> og)
i
- first variable indexj
- second variable indexog
- other generators for the ideal
public boolean isNormalPositionFor(int i, int j)
i
- first variable indexj
- second variable index
public int[] normalPositionIndex2Vars()
public int[] normalPositionIndexUnivars()
public java.util.List<IdealWithUniv<C>> zeroDimRootDecomposition()
public java.util.List<IdealWithUniv<C>> zeroDimPrimeDecomposition()
public java.util.List<IdealWithUniv<C>> zeroDimPrimeDecompositionFE()
public Ideal<C> primaryIdeal(Ideal<C> P)
P
- prime ideal associated to this
public java.util.List<PrimaryComponent<C>> zeroDimPrimaryDecomposition()
public java.util.List<IdealWithUniv<C>> zeroDimElimination(java.util.List<IdealWithUniv<C>> pdec)
pdec
- list of prime ideals G_i
public java.util.List<PrimaryComponent<C>> zeroDimPrimaryDecomposition(java.util.List<IdealWithUniv<C>> pdec)
pdec
- list of prime ideals G_i with no field extensions
public boolean isPrimaryDecomposition(java.util.List<PrimaryComponent<C>> L)
L
- list of primary components G_i
public IdealWithUniv<Quotient<C>> extension(java.lang.String... vars)
vars
- list of variables for a polynomial ring for extension
public IdealWithUniv<Quotient<C>> extension(GenPolynomialRing<C> efac)
efac
- polynomial ring for extension
public IdealWithUniv<Quotient<C>> extension(QuotientRing<C> qfac)
qfac
- quotient polynomial ring for extension
public IdealWithUniv<C> permContraction(IdealWithUniv<Quotient<C>> eideal)
eideal
- extension ideal of this.
public static <C extends GcdRingElem<C>> IdealWithUniv<C> contraction(IdealWithUniv<Quotient<C>> eid)
eid
- extension ideal of this.
public static <C extends GcdRingElem<C>> IdealWithUniv<C> permutation(GenPolynomialRing<C> oring, IdealWithUniv<C> Cont)
oring
- polynomial ring to which variables are back permuted.Cont
- ideal to be permuted
public Ideal<C> radical()
public java.util.List<IdealWithUniv<C>> radicalDecomposition()
public java.util.List<IdealWithUniv<C>> decomposition()
public java.util.List<IdealWithUniv<C>> primeDecomposition()
public boolean isDecomposition(java.util.List<IdealWithUniv<C>> L)
L
- intersection of ideals G_i with ideal(G) eq cap_i(ideal(G_i) )
public java.util.List<PrimaryComponent<C>> primaryDecomposition()
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |