|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectedu.jas.ring.SolvableGroebnerBaseAbstract<C>
public abstract class SolvableGroebnerBaseAbstract<C extends RingElem<C>>
Solvable Groebner Bases abstract class. Implements common left, right and twosided Groebner bases and left, right and twosided GB tests.
| Field Summary | |
|---|---|
protected Reduction<C> |
red
Reduction engine. |
protected SolvableReduction<C> |
sred
Solvable reduction engine. |
| Constructor Summary | |
|---|---|
SolvableGroebnerBaseAbstract()
Constructor. |
|
SolvableGroebnerBaseAbstract(Reduction<C> red,
SolvableReduction<C> sred)
Constructor. |
|
| Method Summary | |
|---|---|
SolvableExtendedGB<C> |
extLeftGB(java.util.List<GenSolvablePolynomial<C>> F)
Solvable Extended Groebner base using critical pair class. |
boolean |
isLeftGB(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
Left Groebner base test. |
boolean |
isLeftGB(java.util.List<GenSolvablePolynomial<C>> F)
Left Groebner base test. |
boolean |
isLeftReductionMatrix(java.util.List<GenSolvablePolynomial<C>> F,
java.util.List<GenSolvablePolynomial<C>> G,
java.util.List<java.util.List<GenSolvablePolynomial<C>>> Mf,
java.util.List<java.util.List<GenSolvablePolynomial<C>>> Mg)
Test if left reduction matrix. |
boolean |
isLeftReductionMatrix(SolvableExtendedGB<C> exgb)
Test if left reduction matrix. |
boolean |
isRightGB(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
Right Groebner base test. |
boolean |
isRightGB(java.util.List<GenSolvablePolynomial<C>> F)
Right Groebner base test. |
boolean |
isTwosidedGB(int modv,
java.util.List<GenSolvablePolynomial<C>> Fp)
Twosided Groebner base test. |
boolean |
isTwosidedGB(java.util.List<GenSolvablePolynomial<C>> Fp)
Twosided Groebner base test. |
java.util.List<GenSolvablePolynomial<C>> |
leftGB(java.util.List<GenSolvablePolynomial<C>> F)
Left Groebner base using pairlist class. |
java.util.List<GenSolvablePolynomial<C>> |
leftMinimalGB(java.util.List<GenSolvablePolynomial<C>> Gp)
Left minimal ordered groebner basis. |
java.util.List<GenSolvablePolynomial<C>> |
rightGB(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
Right Groebner base using opposite ring left GB. |
java.util.List<GenSolvablePolynomial<C>> |
rightGB(java.util.List<GenSolvablePolynomial<C>> F)
Right Groebner base using opposite ring left GB. |
java.util.List<GenSolvablePolynomial<C>> |
twosidedGB(java.util.List<GenSolvablePolynomial<C>> Fp)
Twosided Groebner base using pairlist class. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface edu.jas.ring.SolvableGroebnerBase |
|---|
extLeftGB, leftGB, twosidedGB |
| Field Detail |
|---|
protected SolvableReduction<C extends RingElem<C>> sred
protected Reduction<C extends RingElem<C>> red
| Constructor Detail |
|---|
public SolvableGroebnerBaseAbstract()
public SolvableGroebnerBaseAbstract(Reduction<C> red,
SolvableReduction<C> sred)
red - Reduction enginesred - Solvable reduction engine| Method Detail |
|---|
public boolean isLeftGB(java.util.List<GenSolvablePolynomial<C>> F)
isLeftGB in interface SolvableGroebnerBase<C extends RingElem<C>>F - solvable polynomial list.
public boolean isLeftGB(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
isLeftGB in interface SolvableGroebnerBase<C extends RingElem<C>>modv - number of module variables.F - solvable polynomial list.
public boolean isTwosidedGB(java.util.List<GenSolvablePolynomial<C>> Fp)
isTwosidedGB in interface SolvableGroebnerBase<C extends RingElem<C>>Fp - solvable polynomial list.
public boolean isTwosidedGB(int modv,
java.util.List<GenSolvablePolynomial<C>> Fp)
isTwosidedGB in interface SolvableGroebnerBase<C extends RingElem<C>>modv - number of module variables.Fp - solvable polynomial list.
public boolean isRightGB(java.util.List<GenSolvablePolynomial<C>> F)
isRightGB in interface SolvableGroebnerBase<C extends RingElem<C>>F - solvable polynomial list.
public boolean isRightGB(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
isRightGB in interface SolvableGroebnerBase<C extends RingElem<C>>modv - number of module variables.F - solvable polynomial list.
public java.util.List<GenSolvablePolynomial<C>> leftGB(java.util.List<GenSolvablePolynomial<C>> F)
leftGB in interface SolvableGroebnerBase<C extends RingElem<C>>F - solvable polynomial list.
public SolvableExtendedGB<C> extLeftGB(java.util.List<GenSolvablePolynomial<C>> F)
extLeftGB in interface SolvableGroebnerBase<C extends RingElem<C>>F - solvable polynomial list.
public java.util.List<GenSolvablePolynomial<C>> leftMinimalGB(java.util.List<GenSolvablePolynomial<C>> Gp)
leftMinimalGB in interface SolvableGroebnerBase<C extends RingElem<C>>Gp - a left Groebner base.
public java.util.List<GenSolvablePolynomial<C>> twosidedGB(java.util.List<GenSolvablePolynomial<C>> Fp)
twosidedGB in interface SolvableGroebnerBase<C extends RingElem<C>>Fp - solvable polynomial list.
public java.util.List<GenSolvablePolynomial<C>> rightGB(java.util.List<GenSolvablePolynomial<C>> F)
rightGB in interface SolvableGroebnerBase<C extends RingElem<C>>F - solvable polynomial list.
public java.util.List<GenSolvablePolynomial<C>> rightGB(int modv,
java.util.List<GenSolvablePolynomial<C>> F)
rightGB in interface SolvableGroebnerBase<C extends RingElem<C>>modv - number of module variables.F - solvable polynomial list.
public boolean isLeftReductionMatrix(SolvableExtendedGB<C> exgb)
isLeftReductionMatrix in interface SolvableGroebnerBase<C extends RingElem<C>>exgb - an SolvableExtendedGB container.
public boolean isLeftReductionMatrix(java.util.List<GenSolvablePolynomial<C>> F,
java.util.List<GenSolvablePolynomial<C>> G,
java.util.List<java.util.List<GenSolvablePolynomial<C>>> Mf,
java.util.List<java.util.List<GenSolvablePolynomial<C>>> Mg)
isLeftReductionMatrix in interface SolvableGroebnerBase<C extends RingElem<C>>F - a solvable polynomial list.G - a left Groebner base.Mf - a possible left reduction matrix.Mg - a possible left reduction matrix.
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||