|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectedu.jas.poly.PolyUtil
public class PolyUtil
Polynomial utilities, e.g. conversion between different representations, evaluation and interpolation.
| Constructor Summary | |
|---|---|
PolyUtil()
|
|
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public PolyUtil()
| Method Detail |
|---|
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> recursive(GenPolynomialRing<GenPolynomial<C>> rfac,
GenPolynomial<C> A)
rfac - recursive polynomial ring factory.A - polynomial to be converted.
public static <C extends RingElem<C>> GenPolynomial<C> distribute(GenPolynomialRing<C> dfac,
GenPolynomial<GenPolynomial<C>> B)
dfac - combined polynomial ring factory of coefficients and this.B - polynomial to be converted.
public static GenPolynomial<BigInteger> integerFromModularCoefficients(GenPolynomialRing<BigInteger> fac,
GenPolynomial<ModInteger> A)
fac - result polynomial factory.A - polynomial with ModInteger coefficients to be converted.
public static GenPolynomial<BigInteger> integerFromModularCoefficientsPositive(GenPolynomialRing<BigInteger> fac,
GenPolynomial<ModInteger> A)
fac - result polynomial factory.A - polynomial with ModInteger coefficients to be converted.
public static GenPolynomial<BigInteger> integerFromRationalCoefficients(GenPolynomialRing<BigInteger> fac,
GenPolynomial<BigRational> A)
fac - result polynomial factory.A - polynomial with BigRational coefficients to be converted.
public static java.util.List<GenPolynomial<BigInteger>> integerFromRationalCoefficients(GenPolynomialRing<BigInteger> fac,
java.util.List<GenPolynomial<BigRational>> L)
fac - result polynomial factory.L - list of polynomials with BigRational coefficients to be converted.
public static <C extends RingElem<C>> GenPolynomial<C> fromIntegerCoefficients(GenPolynomialRing<C> fac,
GenPolynomial<BigInteger> A)
fac - result polynomial factory.A - polynomial with BigInteger coefficients to be converted.
public static <C extends RingElem<C>> java.util.List<GenPolynomial<C>> fromIntegerCoefficients(GenPolynomialRing<C> fac,
java.util.List<GenPolynomial<BigInteger>> L)
fac - result polynomial factory.L - list of polynomials with BigInteger coefficients to be converted.
public static GenPolynomial<BigRational> realPart(GenPolynomialRing<BigRational> fac,
GenPolynomial<BigComplex> A)
fac - result polynomial factory.A - polynomial with BigComplex coefficients to be converted.
public static GenPolynomial<BigRational> imaginaryPart(GenPolynomialRing<BigRational> fac,
GenPolynomial<BigComplex> A)
fac - result polynomial factory.A - polynomial with BigComplex coefficients to be converted.
public static GenPolynomial<BigComplex> complexFromRational(GenPolynomialRing<BigComplex> fac,
GenPolynomial<BigRational> A)
fac - result polynomial factory.A - polynomial with BigRational coefficients to be converted.
public static GenPolynomial<ModInteger> chineseRemainder(GenPolynomialRing<ModInteger> fac,
GenPolynomial<ModInteger> A,
ModInteger mi,
GenPolynomial<ModInteger> B)
fac - GenPolynomialA - GenPolynomialB - other GenPolynomialmi - inverse of A.coFac.modul in ring B.coFac.
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> monic(GenPolynomial<GenPolynomial<C>> p)
p - recursive GenPolynomial
public static <C extends RingElem<C>> GenPolynomial<C> baseRemainderPoly(GenPolynomial<C> P,
C s)
GenPolynomial.remainder(edu.jas.poly.GenPolynomial).P - GenPolynomial.s - nonzero coefficient.
public static <C extends RingElem<C>> GenPolynomial<C> basePseudoRemainder(GenPolynomial<C> P,
GenPolynomial<C> S)
GenPolynomial.remainder(edu.jas.poly.GenPolynomial).P - GenPolynomial.S - nonzero GenPolynomial.
public static <C extends RingElem<C>> GenPolynomial<C> basePseudoDivide(GenPolynomial<C> P,
GenPolynomial<C> S)
GenPolynomial.divide(edu.jas.poly.GenPolynomial).P - GenPolynomial.S - nonzero GenPolynomial.
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> recursiveDivide(GenPolynomial<GenPolynomial<C>> P,
GenPolynomial<C> s)
P - recursive GenPolynomial.s - GenPolynomial.
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> recursivePseudoRemainder(GenPolynomial<GenPolynomial<C>> P,
GenPolynomial<GenPolynomial<C>> S)
GenPolynomial.remainder(edu.jas.poly.GenPolynomial).P - recursive GenPolynomial.S - nonzero recursive GenPolynomial.
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> recursivePseudoDivide(GenPolynomial<GenPolynomial<C>> P,
GenPolynomial<GenPolynomial<C>> S)
GenPolynomial.remainder(edu.jas.poly.GenPolynomial).P - recursive GenPolynomial.S - nonzero recursive GenPolynomial.
public static <C extends RingElem<C>> GenPolynomial<C> baseDeriviative(GenPolynomial<C> P)
P - GenPolynomial.
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> recursiveDeriviative(GenPolynomial<GenPolynomial<C>> P)
P - recursive GenPolynomial.
public static BigInteger factorBound(ExpVector e)
e - degree vector of a GenPolynomial A.
public static <C extends RingElem<C>> GenPolynomial<C> evaluateMain(GenPolynomialRing<C> cfac,
GenPolynomial<GenPolynomial<C>> A,
C a)
cfac - coefficent polynomial ring factory.A - polynomial to be evaluated.a - value to evaluate at.
public static <C extends RingElem<C>> C evaluateMain(RingFactory<C> cfac,
GenPolynomial<C> A,
C a)
cfac - coefficent ring factory.A - univariate polynomial to be evaluated.a - value to evaluate at.
public static <C extends RingElem<C>> GenPolynomial<C> evaluate(GenPolynomialRing<C> cfac,
GenPolynomialRing<GenPolynomial<C>> rfac,
GenPolynomialRing<GenPolynomial<C>> nfac,
GenPolynomialRing<C> dfac,
GenPolynomial<C> A,
C a)
cfac - coefficient polynomial ring in k variables
C[x_1, ..., x_k] factory.rfac - coefficient polynomial ring
C[x_1, ..., x_{k-1}] [x_k] factory,
a recursive polynomial ring in 1 variable with
coefficients in k-1 variables.nfac - polynomial ring in n-1 varaibles
C[x_1, ..., x_{k-1}] [x_{k+1}, ..., x_n] factory,
a recursive polynomial ring in n-k+1 variables with
coefficients in k-1 variables.dfac - polynomial ring in n-1 variables.
C[x_1, ..., x_{k-1}, x_{k+1}, ..., x_n] factory.A - polynomial to be evaluated.a - value to evaluate at.
public static <C extends RingElem<C>> GenPolynomial<C> evaluateFirst(GenPolynomialRing<C> cfac,
GenPolynomialRing<C> dfac,
GenPolynomial<C> A,
C a)
cfac - coefficient polynomial ring in first variable
C[x_1] factory.dfac - polynomial ring in n-1 variables.
C[x_2, ..., x_n] factory.A - polynomial to be evaluated.a - value to evaluate at.
public static <C extends RingElem<C>> GenPolynomial<C> evaluateFirstRec(GenPolynomialRing<C> cfac,
GenPolynomialRing<C> dfac,
GenPolynomial<GenPolynomial<C>> A,
C a)
cfac - coefficient polynomial ring in first variable
C[x_1] factory.dfac - polynomial ring in n-1 variables.
C[x_2, ..., x_n] factory.A - recursive polynomial to be evaluated.a - value to evaluate at.
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<C>> interpolate(GenPolynomialRing<GenPolynomial<C>> fac,
GenPolynomial<GenPolynomial<C>> A,
GenPolynomial<C> M,
C mi,
GenPolynomial<C> B,
C am)
fac - GenPolynomialA - GenPolynomialM - GenPolynomialmi - inverse of M(am) in ring fac.coFac.B - evaluation of other GenPolynomialam - evaluation point (interpolation modul) of B, i.e. P(am) = B.
public static <C extends RingElem<C>> GenPolynomial<C> interpolate(GenPolynomialRing<C> fac,
GenPolynomial<C> A,
GenPolynomial<C> M,
C mi,
C a,
C am)
fac - GenPolynomialA - GenPolynomialM - GenPolynomialmi - inverse of M(am) in ring fac.coFac.a - evaluation of other GenPolynomialam - evaluation point (interpolation modul) of a, i.e. P(am) = a.
public static <C extends RingElem<C>> long coeffMaxDegree(GenPolynomial<GenPolynomial<C>> A)
public static GenPolynomial<BigInteger>[] liftHensel(GenPolynomial<BigInteger> C,
BigInteger M,
GenPolynomial<ModInteger> A,
GenPolynomial<ModInteger> B,
GenPolynomial<ModInteger> S,
GenPolynomial<ModInteger> T)
C - GenPolynomialA - GenPolynomialB - other GenPolynomialS - GenPolynomialT - GenPolynomialM - bound on the coefficients of A1 and B1 as factors of C.
public static GenPolynomial<BigInteger>[] liftHenselQuadratic(GenPolynomial<BigInteger> C,
BigInteger M,
GenPolynomial<ModInteger> A,
GenPolynomial<ModInteger> B,
GenPolynomial<ModInteger> S,
GenPolynomial<ModInteger> T)
C - GenPolynomialA - GenPolynomialB - other GenPolynomialS - GenPolynomialT - GenPolynomialM - bound on the coefficients of A1 and B1 as factors of C.
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||