(* ---------------------------------------------------------------------------- * $Id: SACANF.md,v 1.2 1992/02/12 17:34:44 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: SACANF.md,v $ * Revision 1.2 1992/02/12 17:34:44 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:15:22 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE SACANF; (* SAC Algebraic Number Field Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: SACANF.md,v 1.2 1992/02/12 17:34:44 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE AFDIF(AL,BL: LIST): LIST; (*Algebraic number field element difference. AL and BL are elements of Q(alpha) for some algebraic number alpha. CL=AL-BL.*) PROCEDURE AFINV(M,AL: LIST): LIST; (*Algebraic number field inverse. AL is a nonzero element of Q(alpha) for some algebraic number alpha. M is the rational minimal polynomial for alpha. BL=1/AL.*) PROCEDURE AFNEG(AL: LIST): LIST; (*Algebraic number field element negation. AL is an element of Q(alpha) for some algebraic number alpha. BL= -AL.*) PROCEDURE AFPROD(M,AL,BL: LIST): LIST; (*Algebraic number field element product. AL and BL are elements of Q(alpha) for some algebraic number alpha. M is the minimal polynomial of alpha. CL=AL+BL.*) PROCEDURE AFQ(M,AL,BL: LIST): LIST; (*Algebraic number field quotient. AL and BL are elements of Q(alpha) for some algebraic number alpha with BL nonzero. M is the minimal polynomial for alpha. CL=AL/BL.*) PROCEDURE AFSIGN(M,I,AL: LIST): LIST; (*Algebraic number field sign. M is the integral minimal polynomial of a real algebraic number alpha. I is an acceptable isolating interval for alpha. AL is an element of Q(alpha). SL=SIGN(AL).*) PROCEDURE AFSUM(AL,BL: LIST): LIST; (*Algebraic number field element sum. AL and BL are elements of Q(alpha) for some algebraic number alpha. CL=AL+BL.*) PROCEDURE RUPMRN(R: LIST): LIST; (*Rational univariate polynomial minimal polynomial of a rational number. R is a rational number. M is the rational minimal polynomial of R.*) END SACANF. (* -EOF- *)