(* ---------------------------------------------------------------------------- * $Id: RRUINT.md,v 1.1 1994/03/11 15:21:53 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1993 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: RRUINT.md,v $ * Revision 1.1 1994/03/11 15:21:53 pesch * Counting real roots of multivariate polynomials, Diplomarbeit F. Lippold * * ---------------------------------------------------------------------------- *) DEFINITION MODULE RRUINT; (* Real Root Univariate Integral Definition Module *) (* Import lists and declarations. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: RRUINT.md,v 1.1 1994/03/11 15:21:53 pesch Exp $"; CONST copyright = "Copyright (c) 1993 Universitaet Passau"; PROCEDURE RRUIPOLTOVEC(g,d: LIST): LIST; (* Real root univariate integral polynomial to vector. g is an univariate integral polynomial with degree less than d. If a(i) is the coefficient of X**i in g then the list (a(d-1),...,a(0)) is returned. *) PROCEDURE RRUISTRCONST(f,h: LIST): LIST; (* Real root univariate integral structure constants. f and h are univariate integral polynomials. f has degree p > 0. An integral matrix beta with entries beta[i,j] for 0 le i le p-1 and 0 le j le 3*p-3 is created, such that c*h*X**j = beta[0,j]+beta[1,j]*X+...+beta[p-1,j]X**(p-1) modulo f for some positive integer c. beta is represented columnwise. *) PROCEDURE RRUIQUADFORM(beta: LIST): LIST; (* Real root univariate integral quadratic form. beta is the set of structure constants as computed by RRUISTRCONST. Let s(k)=tr(M(c*h*X**k))=beta[0,k]+beta[1,k+1]+...+beta[p-1,k+p-1] for some positive constant c. The matrix Q = (q(i,j)) with q(i,j) = s(i+j-2) is computed. *) PROCEDURE RRUICOUNT(f,H,V,tf: LIST): LIST; (* Real root univariate integral count. f is an univariate integral polynomial with degree p > 0. H is a list of univariate integral polynomials of length s. v is a vector of signs with length not greater than s. tr is the trace flag. ZNL is a list of pairs (z,n) with n is an element of {-1,0,+1}**s and z > 0 is the number of real zeroes of f wrt the sign condition n for the elements of H. ZNL is sorted wrt the invers lexicographical order of the n. If there does not exist any real zero or a zero satisfiing the sign condition v, then the empty list is returned. *) END RRUINT. (* -EOF- *)