(* ----------------------------------------------------------------------------
* $Id: RRUINT.md,v 1.1 1994/03/11 15:21:53 pesch Exp $
* ----------------------------------------------------------------------------
* This file is part of MAS.
* ----------------------------------------------------------------------------
* Copyright (c) 1993 Universitaet Passau
* ----------------------------------------------------------------------------
* $Log: RRUINT.md,v $
* Revision 1.1 1994/03/11 15:21:53 pesch
* Counting real roots of multivariate polynomials, Diplomarbeit F. Lippold
*
* ----------------------------------------------------------------------------
*)
DEFINITION MODULE RRUINT;
(* Real Root Univariate Integral Definition Module *)
(* Import lists and declarations. *)
FROM MASSTOR IMPORT LIST;
CONST rcsid = "$Id: RRUINT.md,v 1.1 1994/03/11 15:21:53 pesch Exp $";
CONST copyright = "Copyright (c) 1993 Universitaet Passau";
PROCEDURE RRUIPOLTOVEC(g,d: LIST): LIST;
(* Real root univariate integral polynomial to vector.
g is an univariate integral polynomial with degree less than d.
If a(i) is the coefficient of X**i in g then the list (a(d-1),...,a(0))
is returned. *)
PROCEDURE RRUISTRCONST(f,h: LIST): LIST;
(* Real root univariate integral structure constants.
f and h are univariate integral polynomials. f has degree p > 0. An integral
matrix beta with entries beta[i,j] for 0 le i le p-1 and 0 le j le 3*p-3 is
created, such that c*h*X**j = beta[0,j]+beta[1,j]*X+...+beta[p-1,j]X**(p-1)
modulo f for some positive integer c. beta is represented columnwise. *)
PROCEDURE RRUIQUADFORM(beta: LIST): LIST;
(* Real root univariate integral quadratic form.
beta is the set of structure constants as computed by RRUISTRCONST.
Let s(k)=tr(M(c*h*X**k))=beta[0,k]+beta[1,k+1]+...+beta[p-1,k+p-1]
for some positive constant c.
The matrix Q = (q(i,j)) with q(i,j) = s(i+j-2) is computed. *)
PROCEDURE RRUICOUNT(f,H,V,tf: LIST): LIST;
(* Real root univariate integral count.
f is an univariate integral polynomial with degree p > 0.
H is a list of univariate integral polynomials of length s. v is a vector
of signs with length not greater than s. tr is the trace flag.
ZNL is a list of pairs (z,n) with n is an element of {-1,0,+1}**s and z > 0
is the number of real zeroes of f wrt the sign condition n for the elements
of H. ZNL is sorted wrt the invers lexicographical order of the n. If there
does not exist any real zero or a zero satisfiing the sign condition v,
then the empty list is returned. *)
END RRUINT.
(* -EOF- *)