(* ---------------------------------------------------------------------------- * $Id: RRUADOM.md,v 1.1 1994/03/11 15:21:51 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1993 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: RRUADOM.md,v $ * Revision 1.1 1994/03/11 15:21:51 pesch * Counting real roots of multivariate polynomials, Diplomarbeit F. Lippold * * ---------------------------------------------------------------------------- *) DEFINITION MODULE RRUADOM; (* Real Root Univariate Arbitrary Domain Definition Module *) (* Import lists and declarations. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: RRUADOM.md,v 1.1 1994/03/11 15:21:51 pesch Exp $"; CONST copyright = "Copyright (c) 1993 Universitaet Passau"; PROCEDURE RRUADPOLTOVEC(D,g,d: LIST): LIST; (* Real root univariate arbitrary domain polynomial to vector. g is an univariate polynomial of domain D with degree less than d. If a(i) is the coefficient of X**i in g then the list (a(d-1),...,a(0)) is returned. *) PROCEDURE RRUADSTRCONST(D,f,h: LIST): LIST; (* Real root univariate arbitrary domain structure constants. f and h are univariate polynomials of domain D. f is monic with degree p > 0. A matrix beta with entries beta[i,j] from D for 0 le i le p-1 and 0 le j le 3*p-3 is created, such that h * X**j = beta[0,j]+beta[1,j]*X+...+beta[p-1,j]X**(p-1) modulo f. beta is represented columnwise. *) PROCEDURE RRUADQUADFORM(beta: LIST): LIST; (* Real root univariate arbitrary domain quadratic form. beta is the set of structure constants as computed by RRUADSTRCONST. Let s(k) = tr(M(h)*M(X**k))=beta[0,k]+beta[1,k+1]+...+beta[p-1,k+p-1]. The matrix Q=(q(i,j)) with q(i,j) = s(i+j-2) is computed. *) PROCEDURE RRUADCOUNT(D,f,H,v,tf: LIST): LIST; (* Real root univariate arbirary domain count. f is a monic univariate polynomial of domain D with degree p > 0. H is a list of univariate polynomials of length s. v is a vector of signs with length not greater than s. tf is the trace flag. ZNL is a list of pairs (z,n) with n is an element of {-1,0,+1}**s and z > 0 is the number of real zeroes of f wrt the sign condition n for the elements of H. ZNL is sorted wrt the invers lexicographical order of the n. If there does not exist any real zero or a zero satisfiing the sign condition v, then the empty list is returned. *) END RRUADOM. (* -EOF- *)