(* ---------------------------------------------------------------------------- * $Id: DIPROOT.md,v 1.3 1996/06/08 14:13:51 kredel Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPROOT.md,v $ * Revision 1.3 1996/06/08 14:13:51 kredel * Correction to interval. * * Revision 1.2 1992/02/12 17:34:24 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:14:43 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPROOT; (* DIP Ideal Real Root System Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPROOT.md,v 1.3 1996/06/08 14:13:51 kredel Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE DIGBSI(P,T,A: LIST): LIST; (*Distributive polynomial system algebraic number G basis sign. P is a goebner basis in inverse lexicographical term order in r variables (non empty), with all neccessary refinements. T=(t1,... ,ti) i le r, where tj=(vj,ij,pj) j=1, ...,i and v is the character list for the j-th variable, ij is an isolating interval for a real root of the univariate polynomial pjl. A is a distributive rational polynomial depending maximal on one variable. s is the sign of A as element of an algebraic extension of Q determined by P. *) PROCEDURE DIITNT(T: LIST): LIST; (*Distributive polynomial system interval tupel from norm tupel. T is a refined normalized tupel of a zero set with a final Goebner base of dimension 0. TP is a list of interval tupels for T. *) PROCEDURE DIITWR(TP,EPS: LIST); (*Distributive polynomial system interval tupels write. TP is a list of interval tupels of a zero set. EPS is LOG10 of the desired precision. *) PROCEDURE DINTWR(TP,EPS: LIST); (*Distributive polynomial system normalized tupels write. TP is a list of normalized tupels of a zero set. EPS is log10 of the desired precision. *) PROCEDURE DIROWR(V,P,EPS: LIST); (*Distributive polynomial system real root write. V is a variable list. P is a list (e,p). EPS is the desired precision. e is the multiplicity of the root, and p is an irreducible polynomial. *) PROCEDURE GBZSET(V,PP,EPS: LIST); (*Groebner base real zero set of zero dimensional ideal. V is a variable list. PP is a list of distributive rational polynomials, PP is a Groebner base. EPS is is LOG10 of the desired precision. *) PROCEDURE RIRWRT(R,EPS: LIST); (*Rational interval refinement write. R=(v,i,p) where v is the variable character string, i is a rational interval containing only one real root of the polynomial p. EPS is the presicion epsilon. *) END DIPROOT. (* -EOF- *)