(* ---------------------------------------------------------------------------- * $Id: DIPRF.md,v 1.2 1992/02/12 17:34:21 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPRF.md,v $ * Revision 1.2 1992/02/12 17:34:21 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:14:39 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPRF; (* DIP Rational Function Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPRF.md,v 1.2 1992/02/12 17:34:21 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE IFWRIT(R,V: LIST); (*Integral function write. R is an integral function. R is the variable list. R is written in the output stream. *) PROCEDURE RFDEN(R: LIST): LIST; (*Rational function denominator. R is a rational function. BL is the denominator of R, a positive integral polynomial in RL variables. *) PROCEDURE RFDIF(R,S: LIST): LIST; (*Rational function difference. R and S are rational functions. T=R-S. *) PROCEDURE RFEXP(A,NL: LIST): LIST; (*Rational function exponentiation. A is a rational function, n is a non-negative beta-integer. B=A**n. *) PROCEDURE RFFIP(RL,A: LIST): LIST; (*Rational function from integral polynomial. A is an integral polynomial in RL variables. R is the rational function A/1. *) PROCEDURE RFINV(R: LIST): LIST; (*Rational function inverse. R is a non-zero rational function. S=1/R. *) PROCEDURE RFNEG(R: LIST): LIST; (*Rational function negative. R is a rational function. S=-R. *) PROCEDURE RFNOV(R: LIST): LIST; (*Rational function number of variables. R is a rational function. RL is the number of variables of the numerator and denumerator of R. *) PROCEDURE RFNUM(R: LIST): LIST; (*Rational function numerator. R is a rational function. AL is the numerator of R, an integral polynomial. *) PROCEDURE RFONE(R: LIST): LIST; (*Rational function one. R is a rational function. s=1 if R=1, s=0 else. *) PROCEDURE RFPROD(R,S: LIST): LIST; (*Rational function product. R and S are rational functions. T=R*S. *) PROCEDURE RFQ(R,S: LIST): LIST; (*Rational function quotient. R and S are rational functions, S non-zero. T=R/S. *) PROCEDURE RFREAD(V: LIST): LIST; (*Rational function read. The rational function R is read from the input stream. V is the variable list. any preceding blanks are skipped. *) PROCEDURE RFRED(RL,A,B: LIST): LIST; (*Rational function reduction to lowest terms. A and B are integral polynomials in RL variables, B non-zero. R is the rational function A/B in canonical form. *) PROCEDURE RFSIGN(R: LIST): LIST; (*Rational function sign. R is a rational function. s=sign(R). *) PROCEDURE RFSUM(R,S: LIST): LIST; (*Rational function sum. R and S are rational functions. T=R+S. *) PROCEDURE RFWRIT(R,V: LIST); (*Rational function write. R is a rational function. V is the variable list. R is written in the output stream. *) END DIPRF. (* -EOF- *)