(* ---------------------------------------------------------------------------- * $Id: DIPIGB.md,v 1.2 1992/02/12 17:34:20 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPIGB.md,v $ * Revision 1.2 1992/02/12 17:34:20 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:14:37 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPIGB; (* DIP Integral Groebner Bases Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPIGB.md,v 1.2 1992/02/12 17:34:20 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE DIIGBA(PL,P,TF: LIST): LIST; (*Distributive integral polynomial groebner basis augmentation. P is a groebner basis of polynomials in distributive representation in r variables. p is a polynomial. PP is the groebner basis of (P,p). tf is the trace flag.*) PROCEDURE DIIGMI(P: LIST): LIST; (*Distributive minimal ordered groebner basis. P is a list of non zero integral polynomials in distributive representation in r variables. PP is the minimal normed and ordered groebner basis. *) PROCEDURE DIILIS(P: LIST): LIST; (*Distributive integral polynomial list irreducible set. P is a list of distributive integral polynomials, PP is the result of reducing each p element of P modulo P-(p) until no further reductions are possible. *) PROCEDURE DIIPGB(P,TF: LIST): LIST; (*Distributive integral polynomial groebner basis. P is a list of integral polynomials in distributive representation in r variables. PP is the groebner basis of P. tf is the trace flag.*) PROCEDURE DIIPNF(P,RPP,S: LIST): LIST; (*Distributive integral polynomial normal form. P is a list of non zero polynomials in distributive integral representation in r variables. S is a distributive integral polynomial. R is a polynomial such that S is reducible to R modulo P and R is in normalform with respect to p. *) PROCEDURE DIIPSP(A,B: LIST): LIST; (*Distributive integral polynomial s polynomial. A and B are integral polynomials in distributive representation. C is the S-polynomial of A and B. *) END DIPIGB. (* -EOF- *)