(* ---------------------------------------------------------------------------- * $Id: DIPDIM.md,v 1.2 1992/02/12 17:34:16 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPDIM.md,v $ * Revision 1.2 1992/02/12 17:34:16 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:14:32 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPDIM; (* DIP Dimension Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPDIM.md,v 1.2 1992/02/12 17:34:16 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE DIGBZT(S: LIST): LIST; (*Distributive polynomial groebner base common zero test. S is a groebner basis. t = -1 or 0 if DIMENSION(S) eq -1 or 0, t = 1 if DIMENSION(S) ge 1. *) PROCEDURE DILDIM(G: LIST; VAR DL,S,M: LIST); (*Distributive polynomial list dimension. G is a list of distributive polynomials, a groebner base. d is the dimension of ideal(G). M is a maximal independend set of variables. S is a set of maximal independent sets of variables. *) PROCEDURE DIDIMS(G,S,U,M: LIST): LIST; (*Distributive polynomial dimension maximal independent set. G is a list of distributive rational polynomials, and a g-base. S is a maximal independent set of variables. U is a set of variables of unknown status. M and MP are lists of maximal independent sets of variables. *) PROCEDURE EVGBIT(S,G: LIST): LIST; (*Exponent vector groebner base intersection test. S is a set of variable indices. G is a groebner basis. t = 0 if intersection = () else t = 1. *) PROCEDURE USETCT(U,V: LIST): LIST; (*Unordered set containment test. U and V are unordered sets. t = 1 if U is contained in V else t = 0. *) PROCEDURE IXSUBS(V,I: LIST): LIST; (*Indexed subset. V is a list. I is an index list. The elements of V with index from I are put to VP. *) PROCEDURE DIDIMWR(DL,S,M,V: LIST); (*Distributive polynomial dimension write. d is the dimension of an ideal. M is a maximal independend set of variables. S is a set of maximal independent sets of variables. V is the variable list. *) END DIPDIM. (* -EOF- *)