(* ---------------------------------------------------------------------------- * $Id: SACPOL.md,v 1.2 1992/02/12 17:34:02 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: SACPOL.md,v $ * Revision 1.2 1992/02/12 17:34:02 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:13:54 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE SACPOL; (* SAC Polynomial System Definition Module. *) FROM MASSTOR IMPORT LIST; VAR PRIME: LIST; CONST rcsid = "$Id: SACPOL.md,v 1.2 1992/02/12 17:34:02 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE PBIN(AL1,EL1,AL2,EL2: LIST): LIST; (*Polynomial binomial. a1 and a2 are elements of a coefficient ring R. e1 and e2 are non-negative beta-integers e1 gt e2. A is the polynomial A(x)=a1*x**e1+a2*x**e2, a univariate polynomial over R.*) PROCEDURE PCL(A: LIST): LIST; (*Polynomial coefficient list. A is a non-zero polynomial. L is the list (a(n),a(n-1), ...,a(0)) where n=DEG(A) and A(x)=a(n)*x**n+ a(n-1)*x**(n-1)+ ...+a(0).*) PROCEDURE PDBORD(A: LIST): LIST; (*Polynomial divided by order. A is a non-zero polynomial. B(x)= A(x)/x**k where k is the order of A.*) PROCEDURE PDEG(A: LIST): LIST; (*Polynomial degree. A is a polynomial. n is the degree of A.*) PROCEDURE PDEGSV(RL,A,IL: LIST): LIST; (*Polynomial degree, specified variable. A is a polynomial in r variables, r ge 1. 1 le i le r. n is the degree of A in the i-th variable.*) PROCEDURE PDEGV(RL,A: LIST): LIST; (*Polynomial degree vector. A is a polynomial A(x(1), ...,x(r)) in r variables. V is the list (v(r), ...,v(1)) where v(i) is the degree of a in x(i).*) PROCEDURE PDPV(RL,A,IL,NL: LIST): LIST; (*Polynomial division by power of variable. A is a polynomial in r variables. 1 le i le r and n is a beta-integer such that x sub i sup n divides A. B eq A/x sub i sup n.*) PROCEDURE PFDP(RL,A: LIST): LIST; (*Polynomial from dense polynomial. A is a dense polynomial in r variables, r ge 0. B is the result of converting A to recursive polynomial representation.*) PROCEDURE PINV(RL,A,KL: LIST): LIST; (*Polynomial introduction of new variables. A is a polynomial in r variables, r ge 0. k ge 0. B(y(1), ...,y(k),x(1), ...,x(r)) =A(x(1), ...,x(r)).*) PROCEDURE PLBCF(RL,A: LIST): LIST; (*Polynomial leading base coefficient. A is a polynomial in r variables. a is the leading base coefficient of A.*) PROCEDURE PLDCF(A: LIST): LIST; (*Polynomial leading coefficient. A is a polynomial. a is the leading coefficient of A.*) PROCEDURE PMDEG(A: LIST): LIST; (*Polynomial modified degree. A is a polynomial. If A=0 then n=-1 and otherwise n=DEG(A).*) PROCEDURE PMON(AL,EL: LIST): LIST; (*Polynomial monomial. a is an element of a coefficient ring R. e is a non-negative beta-integer. A is the polynomial A(x)=a*x**e, a univariate polynomial over R.*) PROCEDURE PMPMV(A,KL: LIST): LIST; (*Polynomial multiplication by power of main variable. A is a polynomial in r variables, r ge 1. k is a non-negative integer. B(x sub 1 , ..., x sub r ) eq A(x sub 1 , ..., x sub r ) * x sub r sup k .*) PROCEDURE PORD(A: LIST): LIST; (*Polynomial order. A is a non-zero polynomial. k is the order of A. that is, if A(x)=a(n)*x**n+ ...+a(0), then k is the smallest integer such that a(k) ne 0.*) PROCEDURE PRED(A: LIST): LIST; (*Polynomial reductum. A is a polynomial. B is the reductum of A.*) PROCEDURE PRT(A: LIST): LIST; (*Polynomial reciprocal transformation. A is a non-zero polynomial. let n=DEG(A). Then B(x)=x**n*A(1/x), where x is the main variable of A.*) PROCEDURE PTBCF(RL,A: LIST): LIST; (*Polynomial trailing base coefficient. A is an r-variate polynomial, r ge 0. a=trailing base coefficient of A.*) PROCEDURE PUFP(RL,A: LIST): LIST; (*Polynomial, univariate, from polynomial. A is an r-variate polynomial, r ge 0. B, a univariate polynomial, equals A(0, ...,0,x).*) PROCEDURE VCOMP(U,V: LIST): LIST; (*Vector comparison. U=(u(1), ...,u(r)) and V=(v(1), ...,v(r)) are lists of beta-integers with common length r ge 1. If U=V then t=0. If U is not equal to V then t=1 if u(i) le v(i) for all i and t=2 if v(i) le u(i) for all i. Otherwise t=3.*) PROCEDURE VLREAD(): LIST; (*Variable list read. V, a list of variables, is read from the input stream. Any preceding blanks are skipped.*) PROCEDURE VLSRCH(VL,V: LIST): LIST; (*Variable list search. v is a variable. V is a list of variables (v(1), ...,v(n)), n non-negative. If v=v(j) for some j then i=j. Otherwise i=0.*) PROCEDURE VLWRIT(V: LIST); (*Variable list write. V, a list of variables, is written in the output stream.*) PROCEDURE VMAX(U,V: LIST): LIST; (*Vector maximum. U=(u(1), ...,u(r)) and V=(v(1), ...,v(r)) are lists of beta-integers with common length r ge 1. W=(w(1), ..., w(r)) where w(i)=MAX(u(i),v(i)).*) PROCEDURE VMIN(U,V: LIST): LIST; (*Vector maximum. U=(u(1), ...,u(r)) and V=(v(1), ...,v(r)) are lists of beta-integers with common length r ge 1. W=(w(1), ..., w(r)) where w(i)=MIN(u(i),v(i)).*) PROCEDURE VREAD(): LIST; (*Variable read. The variable v is read from the input stream. Any number of preceding blanks are skipped.*) END SACPOL. (* -EOF- *)