(* ---------------------------------------------------------------------------- * $Id: DIPIPOL.md,v 1.2 1992/02/12 17:33:50 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPIPOL.md,v $ * Revision 1.2 1992/02/12 17:33:50 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:13:40 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPIPOL; (* DIP Integer Polynomial Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPIPOL.md,v 1.2 1992/02/12 17:33:50 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE VIPIIP(RL,A,B: LIST): LIST; (*Vector of integral polynomials with vector of integers inner product. A is a vector of integral polynomials in r variables, r non-negative. B is a vector of integers. C is the inner product of A and B.*) PROCEDURE HIPRAN(RL,KL,QL,NL: LIST): LIST; (*Homogeneous integral polynomial random. k is a positive beta-digit. q is a rational number q1/q2 with 0 lt q1 le q2 lt beta. n is a non-negative beta-digit r ge 0. A is a random homogeneous integral polynomial in r variables with homogeneous degree n. max norm of A lt 2**k and q is the probability that any particular term of A has a non-zero coefficient.*) PROCEDURE IPRAN(RL,KL,QL,N: LIST): LIST; (*Integral polynomial random. k is a positive beta-digit. q is a rational number q1/q2 with 0 lt q1 le q2 lt beta. N is a list (n sub r, ...,n sub 1) of non-negative beta-digits r ge 0. A is a random integral polynomial in r variables with deg sub i of a le n sub i + 1 for 1 le i le r. Max norm of A lt 2**k and q is the probability that any particular term of A has a non-zero coefficient. Modified version, original version by G. E. Collins. *) END DIPIPOL. (* -EOF- *)