(* ---------------------------------------------------------------------------- * $Id: SYMMFU.md,v 1.3 1992/10/16 13:58:12 kredel Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: SYMMFU.md,v $ * Revision 1.3 1992/10/16 13:58:12 kredel * Cosmetic * * Revision 1.2 1992/02/12 17:33:14 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:12:37 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE SYMMFU; (* Symmetric Functions Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: SYMMFU.md,v 1.3 1992/10/16 13:58:12 kredel Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE DIRPSR(Q,PL: LIST; VAR P1,P2: LIST); (*Distributive rational polynomial symmetric function reduction. Q is a list of the rl elementary symmetric functions in rl variables. pl is reduced modulo Q to p2, the reduction relation is p1. *) PROCEDURE DIRPSE(Q,U: LIST; VAR PL,V: LIST); (*Distributive rational polynomial symm. function exponent reduction. Q is a list of the rl elementary symmetric functions in rl variables. pl is a product of elemenatry symmetric polynomials such that head term pl = u. v is the exponent vector of the product. *) PROCEDURE DIRPES(RL: LIST): LIST; (*Distributive rational polynomial elementary symmetric functions. Q is a list of the rl elementary symmetric functions in rl variables. *) PROCEDURE EVASC(U: LIST): LIST; (*Exponent vector ascending. U is an exponent vector of length rl, U=(u1, ... ,url). tl = 1 if u1 le ... le url, else tl = 0. *) END SYMMFU. (* -EOF- *)