(* ---------------------------------------------------------------------------- * $Id: GSYMFURN.md,v 1.1 1995/11/05 15:57:28 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1995 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: GSYMFURN.md,v $ * Revision 1.1 1995/11/05 15:57:28 pesch * Diplomarbeit Manfred Goebel, Reduktion G-symmetrischer Polynome fuer * beliebige Permutationsgruppen G, slightly edited. * * ---------------------------------------------------------------------------- *) DEFINITION MODULE GSYMFURN; (* G-Symmetric Rational Polynomial System Definition Module. *) FROM MASSTOR IMPORT LIST; FROM MASELEM IMPORT GAMMAINT; CONST rcsid = "$Id: GSYMFURN.md,v 1.1 1995/11/05 15:57:28 pesch Exp $"; CONST copyright = "Copyright (c) 1994 Universitaet Passau"; PROCEDURE GRNORP(PG, MO: LIST): LIST; (*G-Symmetric Rational Orbit Polynomial. The PG-symmetric orbit polynomial of the monomial MO is computed with respect to the permutation group PG. *) PROCEDURE GRNOPL(PG, ML: LIST): LIST; (*G-Symmetric Rational Orbit Polynomial List. The PG-symmetric orbit polynomial list is calculated from the the monomial list ML and the permutation group PG. *) PROCEDURE GRNCUT(PG, POL: LIST; VAR POL_1, POL_2: LIST); (*G-Symmetric Rational Polynomial Cut. The Polynomial POL is splitted up into the G-symmetric polynomial POL_1 and the remainder polynomial POL_2 with respect to the permutation group PG and the termorder. *) PROCEDURE GRNCHK(PG, BASE, POL:LIST): LIST; (*G-Symmetric Rational Polynomial Check. The original polynomial is computed from the polynomial POL and the PG-symmetric base polynomials BASE with respect to the permutation group PG. *) PROCEDURE GRNCHKBAS(VAR BASE, POL: LIST); (*G-Symmetric Rational Base Check. The procedure removes not used base orbit polynomials from BASE and make an update of POL. *) PROCEDURE GRNRED(PG, POL: LIST; VAR BASE, BASE_POL, REM_POL: LIST); (*G-Symmetric Rational Polynomial Reduction. The PG-symmetric polynomial BASE_POL, which is the PG-symmetric polynomial reconstruction with respect to the base polynomials BASE, and the remainder polynomial REM_POL are computed from the polynomial POL with respect to the permutation group PG. *) PROCEDURE GRNBAS(PG: LIST): LIST; (*G-Symmetric Rational Base Construction. The PG-symmetric base polynomials for the permutation group PG are computed. *) PROCEDURE GRNGGB(PG: LIST): LIST; (*G-Symmetric Rational Base Construction (Buchberger-Algorithm). The PG-symmetric base polynomials for the permutation group PG are computed with the Buchberger-Algorithm. *) END GSYMFURN. (* -EOF- *)