(* ---------------------------------------------------------------------------- * $Id: DIPRNIB.md,v 1.1 1995/10/12 14:44:59 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1995 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPRNIB.md,v $ * Revision 1.1 1995/10/12 14:44:59 pesch * Diplomarbeit Rainer Grosse-Gehling. * Involutive Bases. * Slightly edited. * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPRNIB; (* DIP Rational Numbers Polynomial Definition Module in the sense of Janet. *) (* Import lists and declarations. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPRNIB.md,v 1.1 1995/10/12 14:44:59 pesch Exp $"; CONST copyright = "Copyright (c) 1995 Universitaet Passau"; PROCEDURE DIRPNFJ(P,S: LIST): LIST; (*Distributive rational polynomial normal form in the sense of Janet. P is a list of non zero polynomials in distributive representation in r variables. S is a distributive polynomial. The result R is a polynomial such that S is reducible to R modulo P in the sense of Janet and R is in normalform with respect to P. *) PROCEDURE DIRLISJ(P: LIST): LIST; (*Distributive rational polynomial list irreducible set. P is a list of distributive polynomials, The result is a set of polynomials, such that each polynomial p is in Janet-normalform modulo P-(p) *) PROCEDURE DIRPCOM(F: LIST): LIST; (* Distributive rational polynom complete system. Subalgorithm for computing Invbase. Input: Distributive polynomial list F. Output: G: complete system, such that Ideal(G) = Ideal(F). *) PROCEDURE DIRPIB2(F: LIST): LIST; (* Distributive rational polynom involutive basis. Mainalgorithm for computing Invbase. Input: Distributive polynomial list F. Output: G: involutive system, such that Ideal(G) = Ideal(F). *) PROCEDURE DIRPIB(F: LIST): LIST; (* Second Algorithm for computing the involutive Base for a given F. Input: Distributiv Rational Polynomial List F. Output: Equivalent involutive system G.*) END DIPRNIB. (* -EOF- *)