(* ---------------------------------------------------------------------------- * $Id: DIPIIB.md,v 1.1 1995/10/12 14:44:56 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1995 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DIPIIB.md,v $ * Revision 1.1 1995/10/12 14:44:56 pesch * Diplomarbeit Rainer Grosse-Gehling. * Involutive Bases. * Slightly edited. * * ---------------------------------------------------------------------------- *) DEFINITION MODULE DIPIIB; (* DIP Integral Polynomial System Definition Module in the sense of Janet. *) (* Import lists and declarations. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: DIPIIB.md,v 1.1 1995/10/12 14:44:56 pesch Exp $"; CONST copyright = "Copyright (c) 1995 Universitaet Passau"; PROCEDURE DIIPPR2(A,B: LIST): LIST; (*Distributive integral polynomial product. A and B are distributive integral polynomials. Unlike procedure DIIPPR (in modul DIPI) B consists of one monomial. C=A*B.*) PROCEDURE DIIPNFJ(P,RPP,S: LIST): LIST; (*Distributive integral polynomial normal form in the sense of Janet. P is a list of non zero polynomials in distributive integral representation in r variables. RPP and S are distributive integral polynomials. R is a polynomial such that S is reducible to R modulo P and R is in normalform with respect to p. *) PROCEDURE DIILISJ(P: LIST): LIST; (*Distributive integral polynomial list irreducible set. P is a list of distributive integral polynomials, The result is a set such that each p element of P modulo P-(p) is in Janet-normalform *) PROCEDURE DIIPCOM(F: LIST): LIST; (* Distributive integral polynomial complete system. Subalgorithm for computing Invbase. Input: Distributive polynomial list F. Output: G: complete system, such that Ideal(G) = Ideal(F). *) PROCEDURE DIIPIB3(F: LIST): LIST; (* Distributive integral polynomial involutive base. Algorithm for computing the involutive Base for a given F. Input: Distributiv Integral Polynomial List F. Output: Equivalent involutive system G.*) PROCEDURE DIIPIB2(F: LIST): LIST; (* Distributive integral polynomial involutive base. Mainalgorithm for computing Invbase. Input: Distributive polynomial list F. Output: G: involutive system, such that Ideal(G) = Ideal(F). *) PROCEDURE DIIPIB(F: LIST): LIST; (* Distributive integral involutive base. Algorithm for computing the involutive Base for a given F. Input: Distributiv Integral Polynomial List F. Output: Equivalent involutive system G.*) (*** Initialization and setting of options **********************************) PROCEDURE InitDIPIIB; (* Init distributive integral involutive base. Initialization of the DIPIIB options *) PROCEDURE SetDIPIIBSelect(SEL: INTEGER); (* Set Distributive integral polynomial Select. Set polynom selection strategy *) END DIPIIB. (* -EOF- *)