(* ----------------------------------------------------------------------------
* $Id: ADEXTRA.md,v 1.2 1995/12/16 12:07:19 kredel Exp $
* ----------------------------------------------------------------------------
* This file is part of MAS.
* ----------------------------------------------------------------------------
* Copyright (c) 1995 Universitaet Passau
* ----------------------------------------------------------------------------
* $Log: ADEXTRA.md,v $
* Revision 1.2 1995/12/16 12:07:19 kredel
* Comments slightly changed.
*
* Revision 1.1 1995/10/12 14:44:42 pesch
* Diplomarbeit Rainer Grosse-Gehling.
* Involutive Bases.
* Slightly edited.
*
* ----------------------------------------------------------------------------
*)
DEFINITION MODULE ADEXTRA;
(* Arbitrary domain extra definition module *)
FROM MASSTOR IMPORT LIST;
CONST rcsid = "$Id: ADEXTRA.md,v 1.2 1995/12/16 12:07:19 kredel Exp $";
CONST copyright = "Copyright (c) 1995 Universitaet Passau";
PROCEDURE ADPCP(A: LIST): LIST;
(*Arbitrary Domain polynomial content and primitive part.
A is an arbitrary domain polynomial,
The result is the positive primitive part of A. *)
PROCEDURE ADPNEG(A: LIST): LIST;
(*Arbitrary domain polynomial negative.
Input: an arbritrary domain polynomial A,
Output: -A *)
PROCEDURE ADPIQ(A,b: LIST): LIST;
(* Arbitrary domain polynomial integer quotient.
Input: A is an arbitrary domain polynomial, b is a nonzero integer,
and b divides any coefficient of A.
Output: C=A/b.*)
PROCEDURE ADLGinH(H, G: LIST): BOOLEAN;
(* Arbitrary domain polynomial list G in H.
Input: H is a list of lists of arbitrary domain polynomials,
G is a list of arbitrary domain polynomials.
Output: TRUE iff ex. h in H s.t. G = h, FALSE else. *)
PROCEDURE ADLGeqH(H, G: LIST): BOOLEAN;
(* Arbitrary domain polynomial list G equal H.
Input: H and G are lists of arbitrary domain polynomials,
Ouput: TRUE iff H=G, FALSE else. *)
PROCEDURE ADPFeqG(F, G: LIST): BOOLEAN;
(* Arbitrary domain polynomial F equal G.
Input: arbitrary domain polynomials F and G,
Ouput: TRUE iff g = h, FALSE else. *)
PROCEDURE ADIredG(I,G: LIST): LIST;
(* Arbitrary domain polynomial set I reducible modulo G.
Input: arbitrary domain polynomial sets I and G.
Output: 0 iff all i in I are reducible modulo G to zero,
a reduced polynomial p else *)
PROCEDURE ADGJredI(G,I: LIST): LIST;
(* Arbitrary domain polynomial G Janet-reducible modulo I.
Input: arbitrary domain polynomial sets G and I.
Output: 0 iff all g in G are Janet-reducible modulo I to zero,
a reduced polynomial p else *)
PROCEDURE IBeqGB(G,I: LIST): LIST;
(* Inovlutive Base equal Groebner Base.
Input: Groebner Base G and involutive Base I,
Output: 0 iff Id(G) = Id(I), a reduced polynomial p else *)
END ADEXTRA.
(* -EOF- *)