(* ---------------------------------------------------------------------------- * $Id: ADEXTRA.md,v 1.2 1995/12/16 12:07:19 kredel Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1995 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: ADEXTRA.md,v $ * Revision 1.2 1995/12/16 12:07:19 kredel * Comments slightly changed. * * Revision 1.1 1995/10/12 14:44:42 pesch * Diplomarbeit Rainer Grosse-Gehling. * Involutive Bases. * Slightly edited. * * ---------------------------------------------------------------------------- *) DEFINITION MODULE ADEXTRA; (* Arbitrary domain extra definition module *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: ADEXTRA.md,v 1.2 1995/12/16 12:07:19 kredel Exp $"; CONST copyright = "Copyright (c) 1995 Universitaet Passau"; PROCEDURE ADPCP(A: LIST): LIST; (*Arbitrary Domain polynomial content and primitive part. A is an arbitrary domain polynomial, The result is the positive primitive part of A. *) PROCEDURE ADPNEG(A: LIST): LIST; (*Arbitrary domain polynomial negative. Input: an arbritrary domain polynomial A, Output: -A *) PROCEDURE ADPIQ(A,b: LIST): LIST; (* Arbitrary domain polynomial integer quotient. Input: A is an arbitrary domain polynomial, b is a nonzero integer, and b divides any coefficient of A. Output: C=A/b.*) PROCEDURE ADLGinH(H, G: LIST): BOOLEAN; (* Arbitrary domain polynomial list G in H. Input: H is a list of lists of arbitrary domain polynomials, G is a list of arbitrary domain polynomials. Output: TRUE iff ex. h in H s.t. G = h, FALSE else. *) PROCEDURE ADLGeqH(H, G: LIST): BOOLEAN; (* Arbitrary domain polynomial list G equal H. Input: H and G are lists of arbitrary domain polynomials, Ouput: TRUE iff H=G, FALSE else. *) PROCEDURE ADPFeqG(F, G: LIST): BOOLEAN; (* Arbitrary domain polynomial F equal G. Input: arbitrary domain polynomials F and G, Ouput: TRUE iff g = h, FALSE else. *) PROCEDURE ADIredG(I,G: LIST): LIST; (* Arbitrary domain polynomial set I reducible modulo G. Input: arbitrary domain polynomial sets I and G. Output: 0 iff all i in I are reducible modulo G to zero, a reduced polynomial p else *) PROCEDURE ADGJredI(G,I: LIST): LIST; (* Arbitrary domain polynomial G Janet-reducible modulo I. Input: arbitrary domain polynomial sets G and I. Output: 0 iff all g in G are Janet-reducible modulo I to zero, a reduced polynomial p else *) PROCEDURE IBeqGB(G,I: LIST): LIST; (* Inovlutive Base equal Groebner Base. Input: Groebner Base G and involutive Base I, Output: 0 iff Id(G) = Id(I), a reduced polynomial p else *) END ADEXTRA. (* -EOF- *)