(* ---------------------------------------------------------------------------- * $Id: DOMRN.mi,v 1.5 1994/06/10 12:04:33 pfeil Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DOMRN.mi,v $ * Revision 1.5 1994/06/10 12:04:33 pfeil * Added Procedures DPSFF, DPFAC for DIPDCGB * * Revision 1.4 1994/05/19 10:43:10 rose * Added DPNF, DPSP, DPSUGNF, DPSUGSP in connection with the new module DIPAGB * * Revision 1.3 1992/10/15 16:30:21 kredel * Changed rcsid variable * * Revision 1.2 1992/02/12 17:31:36 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:09:53 kredel * Initial revision * * ---------------------------------------------------------------------------- *) IMPLEMENTATION MODULE DOMRN; (* MAS Domain Rational Number Implementation Module. *) (* Import lists and declarations. *) FROM MASSTOR IMPORT LIST, ADV, FIRST, RED, SIL, COMP, BETA, INV; FROM MASERR IMPORT harmless, severe, fatal, ERROR; FROM MASADOM IMPORT Domain, NewDom, SetDifFunc, SetExpFunc, SetFIntFunc, SetFIPolFunc, SetGcdFunc, SetInvFunc, SetInvTFunc, SetLcmFunc, SetNegFunc, SetOneFunc, SetProdFunc, SetQuotFunc, SetReadFunc, SetSignFunc, SetSumFunc, SetWritFunc, (*SetVlddFunc,*) SetDdrdFunc, SetDdwrFunc, SetPFactFunc, SetPSqfrFunc, SetPNormFunc, SetPSpolFunc, SetPSugNormFunc, SetPSugSpolFunc; FROM MASBIOS IMPORT BLINES, SWRITE, CREADB, DIGIT, MASORD, BKSP; FROM SACLIST IMPORT AREAD, AWRITE, OWRITE, FIRST2, LIST2, SECOND; FROM SACRN IMPORT RNSIGN, RNREAD, RNWRIT, RNSUM, RNINT, RNNEG, RNINV, RNQ, RNDIF, RNPROD; FROM MASRN IMPORT RNDRD, RNDWR, RNONE, RNEXP; FROM DIPI IMPORT DIIFRP; FROM DIPC IMPORT PFDIP, DIPFP; FROM DIPRN IMPORT DIRFIP; FROM SACPFAC IMPORT IPFAC; FROM MASPGCD IMPORT IPSFF; FROM DIPGB IMPORT DIPNOR, DIPSP; FROM DIPAGB IMPORT EDIPSUGNOR, EDIPSUGSP; (* Domain: (dom, val, prec) Domain descriptor: (prec) where: val = rational number prec = write precision, -1 = write as rational number *) CONST rcsidi = "$Id: DOMRN.mi,v 1.5 1994/06/10 12:04:33 pfeil Exp $"; CONST copyrighti = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE DDIF(A,B: LIST): LIST; (*Domain difference. c=a-b. *) VAR AL, AP, BL, BP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=RNDIF(AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DDIF; PROCEDURE DEXP(A,NL: LIST): LIST; (*Domain exponentiation. c=a**nl. *) VAR AL, AP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) CL:=RNEXP(AL,NL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DEXP; PROCEDURE DFI(D, A: LIST): LIST; (*Domain from integer. D is a domain element with descriptor, A is an integer. *) VAR C, CL: LIST; BEGIN (*1*) (*select. *) D:=RED(D); (*2*) (*compute. *) CL:=RNINT(A); (*3*) (*create. *) C:=COMP(CL,D); (*5*) RETURN(C); END DFI; PROCEDURE DFIP(D, A: LIST): LIST; (*Domain from integral polynomial. D is a domain eleement with descriptor, A is an integral polynomial in 0 variables, so it is an integer. *) VAR C, CL: LIST; BEGIN (*1*) (*select. *) D:=RED(D); (*2*) (*compute. *) CL:=RNINT(A); (*3*) (*create. *) C:=COMP(CL,D); (*5*) RETURN(C); END DFIP; PROCEDURE DINV(A: LIST): LIST; (*Domain inverse. c=1/a. *) VAR AL, AP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) CL:=RNINV(AL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DINV; PROCEDURE DINVT(A: LIST): LIST; (*Domain inverse existence test. tl=1 if a is invertible, tl=0 else. *) VAR AL, AP, TL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) TL:=1; IF AL = 0 THEN TL:=0 END; (*5*) RETURN(TL); END DINVT; PROCEDURE DNEG(A: LIST): LIST; (*Domain negative. c=-a. *) VAR AL, AP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) CL:=RNNEG(AL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DNEG; PROCEDURE DONE(A: LIST): LIST; (*Domain one. sl=1 if a=1, sl ne 1 else. *) VAR AL, AP, SL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) SL:=RNONE(AL); (*5*) RETURN(SL); END DONE; PROCEDURE DPNF(G,P: LIST): LIST; (* domain polynomial normalform. G is a list of polynomials in distributive representation with coefficients from the domain, P is a polynomial as above, h is a polynomial such that P is reducible to h modulo G and h is in normalform with respect to G *) BEGIN RETURN(DIPNOR(G,P)); END DPNF; PROCEDURE DPROD(A,B: LIST): LIST; (*Domain product. c=a*b. *) VAR AL, AP, BL, BP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=RNPROD(AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DPROD; PROCEDURE DPSP(A,B: LIST): LIST; (* domain polynomial S-polynomial. A and B are polynomials in distributive representation with coefficients from the domain, S is the S-polynomial of A and B *) BEGIN RETURN(DIPSP(A,B)); END DPSP; PROCEDURE DPSUGNF(G,P: LIST): LIST; (* domain polynomial normal with sugar strategy normalform. G is a list of extended polynomials in distributive representation with coefficients from the domain, P is an extended polynomial as above, h is an extended polynomial such that P is reducible to h modulo G and h is in normalform with respect to G *) BEGIN RETURN(EDIPSUGNOR(G,P)); END DPSUGNF; PROCEDURE DPSUGSP(A,B: LIST): LIST; (* domain polynomial normal with sugar strategy S-polynomial. A and B are extended polynomials in distributive representation with coefficients from the domain, S is the extended S-polynomial of A and B *) BEGIN RETURN(EDIPSUGSP(A,B)); END DPSUGSP; PROCEDURE DQUOT(A,B: LIST): LIST; (*Domain quotient. c=a/b. *) VAR AL, AP, BL, BP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=RNQ(AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DQUOT; PROCEDURE DREAD(D: LIST): LIST; (*Domain read. d is the domain element with descriptor. *) VAR C, CL: LIST; BEGIN (*1*) (*select. *) D:=RED(D); (*2*) (*read. *) CL:=RNDRD(); (*3*) (*create. *) C:=COMP(CL,D); (*5*) RETURN(C); END DREAD; PROCEDURE DSIGN(A: LIST): LIST; (*Domain sign. cl=sign(a). *) VAR AL, SL: LIST; BEGIN (*1*) (*advance. *) AL:=FIRST(A); (*2*) (*compute. *) SL:=RNSIGN(AL); (*5*) RETURN(SL); END DSIGN; PROCEDURE DSUM(A,B: LIST): LIST; (*Domain sum. c=a+b. *) VAR AL, AP, BL, BP, C, CL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=RNSUM(AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DSUM; PROCEDURE DWRIT(A: LIST); (*Domain write. *) VAR AL, SL: LIST; BEGIN (*1*) (*advance. *) FIRST2(A,AL,SL); (*2*) (*write. *) IF SL < 0 THEN RNWRIT(AL) ELSE RNDWR(AL,SL) END; (*5*) RETURN; END DWRIT; PROCEDURE DDDRD(): LIST; (*Domain, domain descriptor read. A domain element with descriptor D is read from the input stream. *) VAR D, C, SL: LIST; BEGIN (*1*) (*read. *) SL:=-1; C:=CREADB(); BKSP; (*2*) (*check for number. *) IF (C = MASORD("-")) OR (C = MASORD("-")) OR DIGIT(C) THEN SL:=AREAD(); END; D:=LIST2(0,SL); (*5*) RETURN(D); END DDDRD; PROCEDURE DDDWR(D: LIST); (*Domain, domain descriptor write. d is a domain element with descriptor. d is written to the output stream. *) VAR SL: LIST; BEGIN (*1*) (*select. *) D:=RED(D); SL:=FIRST(D); (*2*) (*write. *) SWRITE(" "); AWRITE(SL); SWRITE(" "); (*5*) RETURN; END DDDWR; PROCEDURE DPFAC(P: LIST): LIST; (* domain polynomial factorization. P is a polynomial in distributive representation with coefficients from the domain, returns a list ((e1,f1),...,(ek,fk)), ei positive integers, fi irreducible polynomials in distributive representation, where P = u * f1**e1 * ... * fk**ek and u unit. *) VAR r,S,C,F,F1,ExpPol,exp,pol: LIST; BEGIN P:=DIIFRP(P); (* rational coeff. to integer coeff. *) PFDIP(P,r,P); (* distributive to recursive *) IPFAC(r,P,S,C,F); (* factorization *) F1:=SIL; WHILE F<>SIL DO ADV(F,ExpPol,F); FIRST2(ExpPol,exp,pol); pol:=DIPFP(r,pol); (* recursive to distributive *) pol:=DIRFIP(pol); (* integer coeff. to rational coeff. *) F1:=COMP(LIST2(exp,pol),F1); END; (* while... *) RETURN(INV(F1)); END DPFAC; PROCEDURE DPSFF(A: LIST): LIST; (* domain polynomial factorization. P is a polynomial in distributive representation with coefficients from the domain, returns a list ((e1,f1),...,(ek,fk)), ei positive integers, fi irreducible polynomials in distributive representation, where P = u * f1**e1 * ... * fk**ek and u unit. *) VAR r,F,F1,ExpPol,exp,pol: LIST; BEGIN A:=DIIFRP(A); (* rational coeff. to integer coeff. *) PFDIP(A,r,A); (* distributive to recursive *) F:=IPSFF(r,A); (* factorization *) F1:=SIL; WHILE F<>SIL DO ADV(F,ExpPol,F); FIRST2(ExpPol,exp,pol); pol:=DIPFP(r,pol); (* recursive to distributive *) pol:=DIRFIP(pol); (* integer coeff. to rational coeff. *) F1:=COMP(LIST2(exp,pol),F1); END; (* while... *) RETURN(INV(F1)); END DPSFF; PROCEDURE DomLoadRN(); (*Domain load rational number. *) VAR d: Domain; BEGIN (*1*) d:=NewDom("RN","Rational Number"); DOMRND:=d; (*2*) SetDifFunc(d,DDIF); SetExpFunc(d,DEXP); SetFIntFunc(d,DFI); SetFIPolFunc(d,DFIP); SetInvFunc(d,DINV); SetInvTFunc(d,DINVT); SetNegFunc(d,DNEG); SetOneFunc(d,DONE); SetProdFunc(d,DPROD); SetQuotFunc(d,DQUOT); SetReadFunc(d,DREAD); SetSignFunc(d,DSIGN); SetSumFunc(d,DSUM); SetWritFunc(d,DWRIT); SetDdrdFunc(d,DDDRD); SetDdwrFunc(d,DDDWR); (*3*) SetPFactFunc(d,DPFAC); SetPNormFunc(d,DPNF); SetPSqfrFunc(d,DPSFF); SetPSpolFunc(d,DPSP); SetPSugNormFunc(d,DPSUGNF); SetPSugSpolFunc(d,DPSUGSP); (*9*) END DomLoadRN; END DOMRN. (* -EOF- *)