(* ----------------------------------------------------------------------------
* $Id: DOMQ.mi,v 1.5 1994/09/06 11:49:09 rose Exp $
* ----------------------------------------------------------------------------
* This file is part of MAS.
* ----------------------------------------------------------------------------
* Copyright (c) 1989 - 1992 Universitaet Passau
* ----------------------------------------------------------------------------
* $Log: DOMQ.mi,v $
* Revision 1.5 1994/09/06 11:49:09 rose
* modified comment
*
* Revision 1.4 1994/05/19 10:43:05 rose
* Added DPNF, DPSP, DPSUGNF, DPSUGSP in connection with the new module DIPAGB
*
* Revision 1.3 1994/03/11 15:54:10 pesch
* Minor corrections.
*
* Revision 1.2 1992/10/15 16:30:19 kredel
* Changed rcsid variable
*
* Revision 1.1 1992/09/28 17:47:13 kredel
* Initial revision
*
* ----------------------------------------------------------------------------
*)
IMPLEMENTATION MODULE DOMQ;
(* MAS Domain Quaternion Number Implementation Module. *)
(* Import lists and declarations. *)
FROM MASSTOR IMPORT LIST, ADV, FIRST, RED, SIL, COMP;
FROM MASERR IMPORT harmless, severe, fatal, ERROR;
FROM MASADOM IMPORT Domain, NewDom,
SetDifFunc, SetExpFunc, SetFIntFunc, SetFIPolFunc,
SetGcdFunc, SetInvFunc, SetInvTFunc,
SetLcmFunc, SetNegFunc, SetOneFunc,
SetProdFunc, SetQuotFunc, SetReadFunc,
SetSignFunc, SetSumFunc, SetWritFunc,
(*SetVlddFunc,*) SetDdrdFunc, SetDdwrFunc,
SetPNormFunc, SetPSpolFunc, SetPSugNormFunc,
SetPSugSpolFunc;
FROM MASBIOS IMPORT BLINES, SWRITE, CREADB, DIGIT, MASORD, BKSP;
FROM SACLIST IMPORT AREAD, AWRITE, OWRITE, FIRST2, LIST2, SECOND;
FROM MASQ IMPORT QNREAD, QNWRITE, QSUM, QINT,
QNEG, QINV, QQ, QDIF, QPROD,
QDREAD, QDWRITE, QONE, QEXP;
FROM DIPAGB IMPORT EDIPSUGNOR, EDIPSUGSP;
FROM DIPGB IMPORT DIPNOR, DIPSP;
CONST rcsidi = "$Id: DOMQ.mi,v 1.5 1994/09/06 11:49:09 rose Exp $";
CONST copyrighti = "Copyright (c) 1989 - 1992 Universitaet Passau";
(* Domain: (dom, val, prec)
Domain descriptor: (prec)
where: val = complex number
prec = write precision, -1 = write as rational number
*)
PROCEDURE DDIF(A,B: LIST): LIST;
(*Domain difference. c=a-b. *)
VAR AL, AP, BL, BP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP);
(*2*) (*compute. *) CL:=QDIF(AL,BL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DDIF;
PROCEDURE DEXP(A,NL: LIST): LIST;
(*Domain exponentiation. c=a**nl. *)
VAR AL, AP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP);
(*2*) (*compute. *) CL:=QEXP(AL,NL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DEXP;
PROCEDURE DFI(D, A: LIST): LIST;
(*Domain from integer. D is a domain element with descriptor,
A is an integer. *)
VAR C, CL: LIST;
BEGIN
(*1*) (*select. *) D:=RED(D);
(*2*) (*compute. *) CL:=QINT(A);
(*3*) (*create. *) C:=COMP(CL,D);
(*5*) RETURN(C); END DFI;
PROCEDURE DFIP(D, A: LIST): LIST;
(*Domain from integral polynomial. D is a domain eleement with descriptor,
A is an integral polynomial in 0 variables, so it is an integer. *)
VAR C, CL: LIST;
BEGIN
(*1*) (*select. *) D:=RED(D);
(*2*) (*compute. *) CL:=QINT(A);
(*3*) (*create. *) C:=COMP(CL,D);
(*5*) RETURN(C); END DFIP;
PROCEDURE DINV(A: LIST): LIST;
(*Domain inverse. c=1/a. *)
VAR AL, AP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP);
(*2*) (*compute. *) CL:=QINV(AL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DINV;
PROCEDURE DINVT(A: LIST): LIST;
(*Domain inverse existence test.
tl=1 if a is invertible, tl=0 else. *)
VAR AL, AP, TL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP);
(*2*) (*compute. *) TL:=1;
IF AL = 0 THEN TL:=0 END;
(*5*) RETURN(TL); END DINVT;
PROCEDURE DNEG(A: LIST): LIST;
(*Domain negative. c=-a. *)
VAR AL, AP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP);
(*2*) (*compute. *) CL:=QNEG(AL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DNEG;
PROCEDURE DONE(A: LIST): LIST;
(*Domain one. sl=1 if a=1, sl ne 1 else. *)
VAR AL, AP, SL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP);
(*2*) (*compute. *) SL:=QONE(AL);
(*5*) RETURN(SL); END DONE;
PROCEDURE DPNF(G,P: LIST): LIST;
(* domain polynomial normalform.
G is a list of polynomials in distributive
representation with coefficients from the domain,
P is a polynomial as above,
h is a polynomial such that P is reducible to h
modulo G and h is in normalform with respect to G *)
BEGIN
RETURN(DIPNOR(G,P));
END DPNF;
PROCEDURE DPROD(A,B: LIST): LIST;
(*Domain product. c=a*b. *)
VAR AL, AP, BL, BP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP);
(*2*) (*compute. *) CL:=QPROD(AL,BL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DPROD;
PROCEDURE DPSP(A,B: LIST): LIST;
(* domain polynomial S-polynomial.
A and B are polynomials in distributive representation
with coefficients from the domain,
S is the S-polynomial of A and B *)
BEGIN
RETURN(DIPSP(A,B));
END DPSP;
PROCEDURE DPSUGNF(G,P: LIST): LIST;
(* domain polynomial normal with sugar strategy normalform.
G is a list of extended polynomials in distributive
representation with coefficients from the domain,
P is an extended polynomial as above,
h is an extended polynomial such that P is reducible to h
modulo G and h is in normalform with respect to G *)
BEGIN
RETURN(EDIPSUGNOR(G,P));
END DPSUGNF;
PROCEDURE DPSUGSP(A,B: LIST): LIST;
(* domain polynomial normal with sugar strategy S-polynomial.
A and B are extended polynomials in distributive representation
with coefficients from the domain,
S is the extended S-polynomial of A and B *)
BEGIN
RETURN(EDIPSUGSP(A,B));
END DPSUGSP;
PROCEDURE DQUOT(A,B: LIST): LIST;
(*Domain quotient. c=a/b. *)
VAR AL, AP, BL, BP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP);
(*2*) (*compute. *) CL:=QQ(AL,BL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DQUOT;
PROCEDURE DREAD(D: LIST): LIST;
(*Domain read. d is the domain element with descriptor. *)
VAR C, CL: LIST;
BEGIN
(*1*) (*select. *) D:=RED(D);
(*2*) (*read. *) CL:=QDREAD();
(*3*) (*create. *) C:=COMP(CL,D);
(*5*) RETURN(C); END DREAD;
PROCEDURE DSIGN(A: LIST): LIST;
(*Domain sign. cl=sign(a). *)
VAR AL, SL: LIST;
BEGIN
(*1*) (*advance. *) AL:=FIRST(A);
(*2*) (*compute. *) IF AL = 0 THEN SL:=0 ELSE SL:=1 END;
(*5*) RETURN(SL); END DSIGN;
PROCEDURE DSUM(A,B: LIST): LIST;
(*Domain sum. c=a+b. *)
VAR AL, AP, BL, BP, C, CL: LIST;
BEGIN
(*1*) (*advance. *) ADV(A, AL,AP); ADV(B, BL,BP);
(*2*) (*compute. *) CL:=QSUM(AL,BL);
(*3*) (*create. *) C:=COMP(CL,AP);
(*6*) RETURN(C); END DSUM;
PROCEDURE DWRIT(A: LIST);
(*Domain write. *)
VAR AL, SL: LIST;
BEGIN
(*1*) (*advance. *) FIRST2(A,AL,SL);
(*2*) (*write. *) IF SL < 0 THEN QNWRITE(AL) ELSE QDWRITE(AL,SL) END;
(*5*) RETURN; END DWRIT;
PROCEDURE DDDRD(): LIST;
(*Domain, domain descriptor read. A domain element with descriptor
D is read from the input stream. *)
VAR D, C, SL: LIST;
BEGIN
(*1*) (*read. *) SL:=-1; C:=CREADB(); BKSP;
(*2*) (*check for number. *)
IF (C = MASORD("-")) OR (C = MASORD("-")) OR DIGIT(C) THEN
SL:=AREAD(); END;
D:=LIST2(0,SL);
(*5*) RETURN(D); END DDDRD;
PROCEDURE DDDWR(D: LIST);
(*Domain, domain descriptor write. d is a domain element with
descriptor. d is written to the output stream. *)
VAR SL: LIST;
BEGIN
(*1*) (*select. *) D:=RED(D); SL:=FIRST(D);
(*2*) (*write. *) SWRITE(" "); AWRITE(SL); SWRITE(" ");
(*5*) RETURN; END DDDWR;
PROCEDURE DomLoadQ();
(*Domain load Quaternion number. *)
VAR d: Domain;
BEGIN
(*1*) d:=NewDom("Q","Quaternion Number"); DOMQD:=d;
(*2*) SetDifFunc(d,DDIF);
SetExpFunc(d,DEXP);
SetFIntFunc(d,DFI);
SetFIPolFunc(d,DFIP);
SetInvFunc(d,DINV);
SetInvTFunc(d,DINVT);
SetNegFunc(d,DNEG);
SetOneFunc(d,DONE);
SetProdFunc(d,DPROD);
SetQuotFunc(d,DQUOT);
SetReadFunc(d,DREAD);
SetSignFunc(d,DSIGN);
SetSumFunc(d,DSUM);
SetWritFunc(d,DWRIT);
SetDdrdFunc(d,DDDRD);
SetDdwrFunc(d,DDDWR);
(*3*) SetPNormFunc(d,DPNF);
SetPSpolFunc(d,DPSP);
SetPSugNormFunc(d,DPSUGNF);
SetPSugSpolFunc(d,DPSUGSP);
(*9*) END DomLoadQ;
END DOMQ.
(* -EOF- *)