(* ---------------------------------------------------------------------------- * $Id: DOMMD.mi,v 1.5 1994/09/06 11:49:00 rose Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: DOMMD.mi,v $ * Revision 1.5 1994/09/06 11:49:00 rose * modified comment * * Revision 1.4 1994/05/19 10:42:56 rose * Added DPNF, DPSP, DPSUGNF, DPSUGSP in connection with the new module DIPAGB * * Revision 1.3 1992/10/15 16:30:17 kredel * Changed rcsid variable * * Revision 1.2 1992/02/12 17:31:31 pesch * Moved CONST definition to the right place * * Revision 1.1 1992/01/22 15:09:47 kredel * Initial revision * * ---------------------------------------------------------------------------- *) IMPLEMENTATION MODULE DOMMD; (* MAS Domain Modular Digit Implementation Module. *) (* Import lists and declarations. *) FROM MASSTOR IMPORT LIST, ADV, FIRST, RED, SIL, COMP; FROM MASERR IMPORT harmless, severe, fatal, ERROR; FROM MASADOM IMPORT Domain, NewDom, SetDifFunc, SetExpFunc, SetFIntFunc, SetFIPolFunc, SetGcdFunc, SetInvFunc, SetInvTFunc, SetLcmFunc, SetNegFunc, SetOneFunc, SetProdFunc, SetQuotFunc, SetReadFunc, SetSignFunc, SetSumFunc, SetWritFunc, (*SetVlddFunc,*) SetDdrdFunc, SetDdwrFunc, SetPNormFunc, SetPSpolFunc, SetPSugNormFunc, SetPSugSpolFunc; FROM MASBIOS IMPORT BLINES, SWRITE; FROM SACLIST IMPORT OWRITE, FIRST2, LIST3, SECOND; FROM SACI IMPORT ISIGNF, IREAD, IWRITE; FROM SACM IMPORT MDSUM, MDHOM, MDNEG, MDINV, MDQ, MDEXP, MDDIF, MDPROD; FROM SACPRIM IMPORT IFACT; FROM DIPAGB IMPORT EDIPSUGNOR, EDIPSUGSP; FROM DIPGB IMPORT DIPNOR, DIPSP; (* Domain: (dom, val, mod, prime) Domain descriptor: (mod, prime) where: val = modular digit mod = modulus prime = 1 if mod is prime, 0 else *) CONST rcsidi = "$Id: DOMMD.mi,v 1.5 1994/09/06 11:49:00 rose Exp $"; CONST copyrighti = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE DDIF(A,B: LIST): LIST; (*Domain difference. c=a-b. *) VAR AL, AP, BL, BP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=MDDIF(M,AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DDIF; PROCEDURE DEXP(A,NL: LIST): LIST; (*Domain exponentiation. c=a**nl. *) VAR AL, AP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); (*2*) (*compute. *) CL:=MDEXP(M,AL,NL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DEXP; PROCEDURE DFI(D, A: LIST): LIST; (*Domain from integer. D is a domain element with descriptor, A is an integer. *) VAR C, CL, M: LIST; BEGIN (*1*) (*select. *) D:=RED(D); M:=FIRST(D); (*2*) (*compute. *) CL:=MDHOM(M,A); (*3*) (*create. *) C:=COMP(CL,D); (*5*) RETURN(C); END DFI; PROCEDURE DFIP(D, A: LIST): LIST; (*Domain from integral polynomial. D is a domain eleement with descriptor, A is an integral polynomial in 0 variables, so it is an integer. *) VAR C, CL, M: LIST; BEGIN (*1*) (*select. *) D:=RED(D); M:=FIRST(D); (*2*) (*compute. *) CL:=MDHOM(M,A); (*3*) (*create. *) C:=COMP(CL,D); (*5*) RETURN(C); END DFIP; PROCEDURE DINV(A: LIST): LIST; (*Domain inverse. c=1/a. *) VAR AL, AP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); (*2*) (*compute. *) CL:=MDINV(M,AL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DINV; PROCEDURE DINVT(A: LIST): LIST; (*Domain inverse existence test. tl=1 if a is invertible, tl=0 else. *) VAR AL, AP, TL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) TL:=0; IF AL <> 0 THEN TL:=FIRST(AP) END; (*5*) RETURN(TL); END DINVT; PROCEDURE DNEG(A: LIST): LIST; (*Domain negative. c=-a. *) VAR AL, AP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); (*2*) (*compute. *) CL:=MDNEG(M,AL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DNEG; PROCEDURE DONE(A: LIST): LIST; (*Domain one. sl=1 if a=1, sl ne 1 else. *) VAR AL, AP, SL: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); (*2*) (*compute. *) SL:=AL; IF SL <> 1 THEN SL:=0 END; (*5*) RETURN(SL); END DONE; PROCEDURE DPNF(G,P: LIST): LIST; (* domain polynomial normalform. G is a list of polynomials in distributive representation with coefficients from the domain, P is a polynomial as above, h is a polynomial such that P is reducible to h modulo G and h is in normalform with respect to G *) BEGIN RETURN(DIPNOR(G,P)); END DPNF; PROCEDURE DPROD(A,B: LIST): LIST; (*Domain product. c=a*b. *) VAR AL, AP, BL, BP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=MDPROD(M,AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DPROD; PROCEDURE DPSP(A,B: LIST): LIST; (* domain polynomial S-polynomial. A and B are polynomials in distributive representation with coefficients from the domain, S is the S-polynomial of A and B *) BEGIN RETURN(DIPSP(A,B)); END DPSP; PROCEDURE DPSUGNF(G,P: LIST): LIST; (* domain polynomial normal with sugar strategy normalform. G is a list of extended polynomials in distributive representation with coefficients from the domain, P is an extended polynomial as above, h is an extended polynomial such that P is reducible to h modulo G and h is in normalform with respect to G *) BEGIN RETURN(EDIPSUGNOR(G,P)); END DPSUGNF; PROCEDURE DPSUGSP(A,B: LIST): LIST; (* domain polynomial normal with sugar strategy S-polynomial. A and B are extended polynomials in distributive representation with coefficients from the domain, S is the extended S-polynomial of A and B *) BEGIN RETURN(EDIPSUGSP(A,B)); END DPSUGSP; PROCEDURE DQUOT(A,B: LIST): LIST; (*Domain quotient. c=a/b. *) VAR AL, AP, BL, BP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=MDQ(M,AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DQUOT; PROCEDURE DREAD(D: LIST): LIST; (*Domain read. d is the domain element with descriptor. *) VAR C, CL, M: LIST; BEGIN (*1*) (*select. *) D:=RED(D); M:=FIRST(D); (*2*) (*read. *) CL:=IREAD(); CL:=MDHOM(M,CL); (*3*) (*create. *) C:=COMP(CL,D); (*5*) RETURN(C); END DREAD; PROCEDURE DSIGN(A: LIST): LIST; (*Domain sign. cl=sign(a). *) VAR AL, SL: LIST; BEGIN (*1*) (*advance. *) AL:=FIRST(A); (*2*) (*compute. *) SL:=ISIGNF(AL); (*5*) RETURN(SL); END DSIGN; PROCEDURE DSUM(A,B: LIST): LIST; (*Domain sum. c=a+b. *) VAR AL, AP, BL, BP, C, CL, M: LIST; BEGIN (*1*) (*advance. *) ADV(A, AL,AP); M:=FIRST(AP); ADV(B, BL,BP); (*2*) (*compute. *) CL:=MDSUM(M,AL,BL); (*3*) (*create. *) C:=COMP(CL,AP); (*6*) RETURN(C); END DSUM; PROCEDURE DWRIT(A: LIST); (*Domain write. *) VAR AL: LIST; BEGIN (*1*) (*advance. *) AL:=FIRST(A); (*2*) (*write. *) IWRITE(AL); (*5*) RETURN; END DWRIT; PROCEDURE DDDRD(): LIST; (*Domain, domain descriptor read. A domain element with descriptor D is read from the input stream. *) VAR M, D, PL, MP: LIST; BEGIN (*1*) (*read. *) M:=IREAD(); (*2*) (*check for prime number. *) MP:=IFACT(M); PL:=1; IF RED(MP) <> SIL THEN OWRITE(MP); BLINES(0); ERROR(harmless,"Warning: Modular digit not prime. "); PL:=0; END; D:=LIST3(0,M,PL); (*5*) RETURN(D); END DDDRD; PROCEDURE DDDWR(D: LIST); (*Domain, domain descriptor write. d is a domain element with descriptor. d is written to the output stream. *) VAR M, PL: LIST; BEGIN (*1*) (*select. *) FIRST2(RED(D), M,PL); (*2*) (*write. *) SWRITE(" "); IWRITE(M); SWRITE(" (*"); IF PL <> 1 THEN SWRITE(" not") END; SWRITE(" prime. *)"); (*5*) RETURN; END DDDWR; PROCEDURE DomLoadMD(); (*Domain load modular digit. *) VAR d: Domain; BEGIN (*1*) d:=NewDom("MD","Modular Digit"); DOMMDD:=d; (*2*) SetDifFunc(d,DDIF); SetExpFunc(d,DEXP); SetFIntFunc(d,DFI); SetFIPolFunc(d,DFIP); SetInvFunc(d,DINV); SetInvTFunc(d,DINVT); SetNegFunc(d,DNEG); SetOneFunc(d,DONE); SetProdFunc(d,DPROD); SetQuotFunc(d,DQUOT); SetReadFunc(d,DREAD); SetSignFunc(d,DSIGN); SetSumFunc(d,DSUM); SetWritFunc(d,DWRIT); SetDdrdFunc(d,DDDRD); SetDdwrFunc(d,DDDWR); (*3*) SetPNormFunc(d,DPNF); SetPSpolFunc(d,DPSP); SetPSugNormFunc(d,DPSUGNF); SetPSugSpolFunc(d,DPSUGSP); (*9*) END DomLoadMD; END DOMMD. (* -EOF- *)