(* ---------------------------------------------------------------------------- * $Id: SACI.md,v 1.2 1992/02/12 13:19:11 pesch Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: SACI.md,v $ * Revision 1.2 1992/02/12 13:19:11 pesch * Moved CONST Definition to the right place. * * Revision 1.1 1992/01/22 15:08:14 kredel * Initial revision * * ---------------------------------------------------------------------------- *) DEFINITION MODULE SACI; (* SAC Integer Definition Module. *) FROM MASSTOR IMPORT LIST; CONST rcsid = "$Id: SACI.md,v 1.2 1992/02/12 13:19:11 pesch Exp $"; CONST copyright = "Copyright (c) 1989 - 1992 Universitaet Passau"; PROCEDURE AADV(L: LIST; VAR AL,LP: LIST); (*Arithmetic advance. L is a list. If L ne () then a=FIRST(L) and LP=RED(L). Otherwise a=0 and LP=().*) PROCEDURE IABSF(A: LIST): LIST; (*Integer absolute value function. A is an integer. B=ABS(A).*) PROCEDURE ICOMP(A,B: LIST): LIST; (*Integer comparison. A and B are integers. s=SIGN(A-B).*) PROCEDURE IDEGCD(AL,BL: LIST; VAR CL,UL1,VL1,UL2,VL2: LIST); (*Integer doubly extended greatest common divisor algorithm. a and b are integers. c=GCD(a,b). a*u1+b*v1=c and a*u2+b*v2=0. If a ne 0 and b ne 0 then ABS(u1) le ABS(b)/(2*c), ABS(v1) le ABS(a)/(2*c), u2=-b/c and v2=a/c. Otherwise u1=v2=SIGN(a), v1=SIGN(b) and u2=-SIGN(b).*) PROCEDURE IDIF(A,B: LIST): LIST; (*Integer difference. A and B are integers. C=A-B.*) PROCEDURE IDIPR2(A,B,AL,BL: LIST): LIST; (*Integer digit inner product, length 2. A and B are integers. a and b are beta-integers. C=A*a+B*b.*) PROCEDURE IDPR(A,BL: LIST): LIST; (*Integer-digit product. A is an integer. b is a beta-digit. C=A*b.*) PROCEDURE IDP2(A,KL: LIST): LIST; (*Integer division by power of 2. A is an integer. k is a non-negative beta-digit. B is the integral part of A/2**k.*) PROCEDURE IDQ(A,BL: LIST): LIST; (*Integer-digit quotient. A is an integer. b is a non-zero beta-digit. C=INTEGER(A/b).*) PROCEDURE IDQR(A,BL: LIST; VAR Q,RL: LIST); (*Integer-digit quotient and remainder. A is an integer. b is a non-zero beta-digit. Q is the integral part of A/b and r=A-b*Q.*) PROCEDURE IDREM(A,BL: LIST): LIST; (*Integer-digit remainder. A is an integer. b is a non-zero beta-digit. r=A-b*INTEGER(A/b).*) PROCEDURE IEGCD(AL,BL: LIST; VAR CL,UL1,VL1: LIST); (*Integer extended greatest common divisor algorithm. a and b are integers. c=GCD(a,b). a*u1+b*v1=c. If a ne 0 and b ne 0 then ABS(u1) le ABS(b)/(2*c) and ABS(v1) le ABS(a)/(2*c). Otherwise u1=SIGN(a) and v1=SIGN(b).*) PROCEDURE IEVEN(A: LIST): BOOLEAN; (*Integer even. A is an integer. If A is even then true is returned and otherwise false. *) PROCEDURE IEXP(A,NL: LIST): LIST; (*Integer exponentiation. A is an integer. n is a non-negative beta-integer. B=A**n.*) PROCEDURE IFCL2(AL: LIST; VAR ML,NL: LIST); (*Integer, floor and ceiling, logarithm, base 2. a is a non-zero integer. m and n, gamma-integers, are the floor and ceiling of LOG2(ABS(a)) respectively.*) PROCEDURE IGCD(A,B: LIST): LIST; (*Integer greatest common divisor. A and B are integers. C=GCD(A,B).*) PROCEDURE IGCDCF(A,B: LIST; VAR C,AB,BB: LIST); (*Integer greatest common divisor and cofactors. A and B are integers. C eq GCD(A,B). If C eq 0 then AB eq BB eq 0 and otherwise AB eq A/C,BB eq B/C.*) PROCEDURE IHEGCD(A,B: LIST; VAR C,V: LIST); (*Integer half-extended greatest common divisor. A and B are integers. C=GCD(A,B). If A ne 0, B*V=C(mod A), with ABS(V) le ABS(A)/2C. If A=0,V=SIGN(B).*) PROCEDURE ILCM(A,B: LIST): LIST; (*Integer least common multiple. A and B are integers. C=LCM(A,B), a nonnegative integer.*) PROCEDURE ILCOMB(A,B,UL,VL: LIST): LIST; (*Integer linear combination. A and B are non-negative integers. u and v are beta-integers such that A*u+B*v ge 0. C=A*u+B*v.*) PROCEDURE ILOG2(A: LIST): LIST; (*Integer logarithm, base 2. A is an integer. If A=0 then n=0. Otherwise n=FLOOR(LOG2(ABS(A)))+1, a beta-integer.*) PROCEDURE ILWRIT(L: LIST); (*Integer list write. L is a list of integers. The list L is written in the output stream.*) PROCEDURE IMAX(AL,BL: LIST): LIST; (*Integer maximum. a and b are integers. c is the maximum of a and b.*) PROCEDURE IMIN(AL,BL: LIST): LIST; (*Integer minimum. a and b are integers. c is the minimum of a and b.*) PROCEDURE IMP2(A,HL: LIST): LIST; (*Integer multiplication by power of 2. A is an integer. h is a non-negative beta-integer. B=A*(2**h).*) PROCEDURE INEG(A: LIST): LIST; (*Integer negation. A is an integer. B=-A.*) PROCEDURE IODD(A: LIST): BOOLEAN; (*Integer odd. A is an integer. If a is odd then true is returned and otherwise false. *) PROCEDURE IORD2(AL: LIST): LIST; (*Integer, order of 2. a is a non-zero integer. n is the largest integer such that 2**n divides a.*) PROCEDURE IPOWER(A,L: LIST; VAR B,NL: LIST); (*Integer power. A, greater than or equal to 3, is an odd positive integer. L is a list (p(1),p(2), ...,p(k)) of the first k prime numbers, with p(k) greater than or equal to the base 3 logarithm of A. If A=B**m for some m greater than or equal to 2 then n is the least such m and B=A**(1/n). Otherwise B=0 and n=0.*) PROCEDURE IPROD(A,B: LIST): LIST; (*Integer product. A and B are integers. C=A*B.*) PROCEDURE IPRODK(A,B: LIST): LIST; (*Integer product, Karatsuba algorithm. A and B are integers. C=A*B.*) PROCEDURE IQ(A,B: LIST): LIST; (*Integer quotient. A and B are integers, B ne 0. C is the integral part of A/B.*) PROCEDURE IQR(A,B: LIST; VAR Q,R: LIST); (*Integer quotient and remainder. A and B are integers, B ne 0. Q is the quotient, integral part of A/B, and R is the remainder A-B*Q.*) PROCEDURE IRAND(NL: LIST): LIST; (*Integer, random. n is a positive beta-integer. A is an integer with random sign and random absolute value less than 2**n.*) PROCEDURE IREAD(): LIST; (*Integer read. The integer A is read from the input stream. Any preceding blanks are skipped.*) PROCEDURE IREM(A,B: LIST): LIST; (*Integer remainder. A and B are integers, B non-zero. C is the remainder of A and B.*) PROCEDURE IROOT(A,NL: LIST; VAR B,TL: LIST); (*Integer root. A is a positive integer. n, greater than or equal to 2, is a beta-integer. B=FLOOR(A**(1/n)) and t=SIGN(A-B**n).*) PROCEDURE ISEG(A,NL: LIST; VAR A1,A0: LIST); (*Integer segmentation. A is an integer. n is a positive beta- integer. A1 is the integral part of A/beta**n. A0=A-A1*beta**n.*) PROCEDURE ISIGNF(A: LIST): LIST; (*Integer sign function. A is an integer. s=SIGN(A).*) PROCEDURE ISQRT(A: LIST; VAR B,TL: LIST); (*Integer square root. A is a non-negative integer. B is the floor function of the square root of A and t is the sign of A-B*B.*) PROCEDURE ISSUM(NL,L: LIST): LIST; (*Integer shifted sum. n is a positive integer. L is a list (c(0),c(1), ...,c(k)), k non-negative, of integers c(i) with ABS(c(i)) less than beta**(2*n+1). Either each c(i) is non-negative or each c(i) is non-positive. C is the sum on i, from 0 to k, of c(i)*(beta**(i*n)).*) PROCEDURE ISUM(A,B: LIST): LIST; (*Integer sum. A and B are integers. C=A+B.*) PROCEDURE ITRUNC(A,NL: LIST): LIST; (*Integer truncation. A is an integer. n is a beta-integer. B=INTEGER(A/2**n).*) PROCEDURE IWRITE(A: LIST); (*Integer write. The input integer A is converted to decimal and written in the output stream.*) END SACI. (* -EOF- *)