(* ---------------------------------------------------------------------------- * $Id: MASQ.mi,v 1.3 1992/10/15 16:28:14 kredel Exp $ * ---------------------------------------------------------------------------- * This file is part of MAS. * ---------------------------------------------------------------------------- * Copyright (c) 1989 - 1992 Universitaet Passau * ---------------------------------------------------------------------------- * $Log: MASQ.mi,v $ * Revision 1.3 1992/10/15 16:28:14 kredel * Changed rcsid variable * * Revision 1.2 1992/09/28 18:34:55 kredel * Updated revision string. * * Revision 1.1 1992/09/28 17:29:13 kredel * Initial revision * * ---------------------------------------------------------------------------- *) IMPLEMENTATION MODULE MASQ; (* MAS Quaternion Number Implementation Module. *) (* Import lists and declarations. *) FROM MASBIOS IMPORT SWRITE, CWRITE, CREADB, MASORD, BKSP, BLINES; FROM MASSTOR IMPORT LIST, ADV, COMP, FIRST, SIL; FROM MASERR IMPORT severe, ERROR; FROM SACLIST IMPORT OWRITE, SECOND, THIRD, FOURTH, FIRST4, LIST4, COMP4, AWRITE, EQUAL; FROM SACRN IMPORT RNSUM, RNPROD, RNCOMP, RNNEG, RNDIF, RNQ, RNINT, RNREAD, RNWRIT, RNRAND; FROM MASRN IMPORT RNDWR, RNDRD, RNONE; CONST rcsidi = "$Id: MASQ.mi,v 1.3 1992/10/15 16:28:14 kredel Exp $"; CONST copyrighti = "Copyright (c) 1989 - 1992 Universitaet Passau"; (* Representation of a + i b + j c + k d, with a, b, c, d rational numbers, is 0 if a=0 and b=0 and c=0 and d=0 (a,b,c,d) else *) PROCEDURE QABS(R: LIST): LIST; (*Quaternion number absolute value. R is a quaternion number. S is the absolute value of R, a rational number. *) VAR S, r, i, j, k: LIST; BEGIN (*1*) IF R = 0 THEN S:=R; RETURN(S) END; (*2*) FIRST4(R,r,i,j,k); S:=RNSUM(RNPROD(r,r),RNPROD(i,i)); S:=RNSUM(S,RNPROD(j,j)); S:=RNSUM(S,RNPROD(k,k)); RETURN(S); (*4*) END QABS; PROCEDURE QCON(R: LIST): LIST; (*Quaternion number conjugate. R is a quaternion number. S is the quaternion conjugate of R. *) VAR S, r, i, j, k: LIST; BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) FIRST4(R,r,i,j,k); S:=COMP4(r,RNNEG(i),RNNEG(j),RNNEG(k),SIL); RETURN(S); (*4*) END QCON; PROCEDURE QCOMP(R,S: LIST): LIST; (*Quaternion number comparison. R and S are quaternion numbers. t=0 if R=S, t=1 else. *) VAR t: LIST; BEGIN (*1*) t:=EQUAL(R,S); IF t = 1 THEN t:=0 ELSE t:=1 END; RETURN(t); (*4*) END QCOMP; PROCEDURE QDIF(R,S: LIST): LIST; (*Quaternion number difference. R and S are quaternion numbers. T=R-S. *) VAR T, r1, i1, j1, k1, r2, i2, j2, k2: LIST; BEGIN (*1*) IF R = 0 THEN T:=QNEG(S); RETURN(T) END; IF S = 0 THEN T:=R; RETURN(T) END; (*2*) FIRST4(R,r1,i1,j1,k1); FIRST4(S,r2,i2,j2,k2); r1:=RNDIF(r1,r2); i1:=RNDIF(i1,i2); j1:=RNDIF(j1,j2); k1:=RNDIF(k1,k2); IF (r1 = 0) AND (i1 = 0) AND (j1 = 0) AND (k1 = 0) THEN RETURN(0) END; T:=COMP4(r1,i1,j1,k1,SIL); RETURN(T); (*4*) END QDIF; PROCEDURE QDREAD(): LIST; (*Quaternion number decimal read. The quaternion number R is read from the input stream. Any preceding blanks are skipped. *) VAR R, r, i, j, k, c: LIST; BEGIN (*1*) r:=RNDRD(); i:=0; c:=CREADB(); IF c = MASORD("i") THEN i:=RNDRD(); ELSE BKSP END; c:=CREADB(); IF c = MASORD("j") THEN j:=RNDRD(); ELSE BKSP END; c:=CREADB(); IF c = MASORD("k") THEN k:=RNDRD(); ELSE BKSP END; IF (r = 0) AND (i = 0) AND (j = 0) AND (k = 0) THEN RETURN(0) END; R:=COMP4(r,i,j,k,SIL); RETURN(R); (*4*) END QDREAD; PROCEDURE QDWRITE(R,NL: LIST); (*Quaternion number decimal write. R is a quaternion number. n is a non-negative integer. R is approximated by a decimal fraction D with n decimal digits following the decimal point and D is written in the output stream. The inaccuracy of the approximation is at most (1/2)*10**-n. *) VAR r, i, j, k: LIST; BEGIN (*1*) IF R = 0 THEN AWRITE(R); RETURN END; (*2*) FIRST4(R,r,i,j,k); RNDWR(r,NL); IF i <> 0 THEN SWRITE(" i "); RNDWR(i,NL) END; IF j <> 0 THEN SWRITE(" j "); RNDWR(j,NL) END; IF k <> 0 THEN SWRITE(" k "); RNDWR(k,NL) END; (*4*) END QDWRITE; PROCEDURE QEXP(A,NL: LIST): LIST; (*Quaternion number exponentiation. A is a quaternion number, n is a non-negative beta-integer. B=A**n. *) VAR B, KL: LIST; BEGIN (*1*) (*n less than or equal to 1.*) IF NL = 0 THEN B:=QINT(1); RETURN(B); END; IF NL = 1 THEN B:=A; RETURN(B); END; (*2*) (*recursion.*) KL:=NL DIV 2; B:=QEXP(A,KL); B:=QPROD(B,B); IF NL > 2*KL THEN B:=QPROD(B,A); END; RETURN(B); (*5*) END QEXP; PROCEDURE QIMi(R: LIST): LIST; (*Quaternion number imaginary part i. R is a quaternion number. b is the imaginary part i of R, a rational number. *) BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) RETURN(SECOND(R)); (*4*) END QIMi; PROCEDURE QIMj(R: LIST): LIST; (*Quaternion number imaginary part j. R is a quaternion number. b is the imaginary part j of R, a rational number. *) BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) RETURN(THIRD(R)); (*4*) END QIMj; PROCEDURE QIMk(R: LIST): LIST; (*Quaternion number imaginary part k. R is a quaternion number. b is the imaginary part k of R, a rational number. *) BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) RETURN(FOURTH(R)); (*4*) END QIMk; PROCEDURE QINT(A: LIST): LIST; (*Quaternion number from integer. A is an integer. R is the quaternion number with real part A/1 and imaginary part 0. *) VAR R: LIST; BEGIN (*1*) IF A = 0 THEN R:=A; RETURN(R) END; (*2*) R:=COMP4(RNINT(A),0,0,0,SIL); RETURN(R); (*4*) END QINT; PROCEDURE QRE(R: LIST): LIST; (*Quaternion number real part. R is a quaternion number. b is the real part of R, a rational number. *) BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) RETURN(FIRST(R)); (*4*) END QRE; PROCEDURE QRN(A: LIST): LIST; (*Quaternion number from rational number. A is a rational number. R is the quaternion number with real part A and imaginary part 0. *) VAR R: LIST; BEGIN (*1*) IF A = 0 THEN RETURN(0) END; (*2*) R:=COMP4(A,0,0,0,SIL); RETURN(R); (*4*) END QRN; PROCEDURE QRN4(A, B, C, D: LIST): LIST; (*Quaternion number from 4-tuple of rational numbers. A, B, C and D are rational numbers. R is the quaternion number with real part A and imaginary part i B, imaginary part j C, imaginary part k D. *) VAR R: LIST; BEGIN (*1*) IF (A = 0) AND (B = 0) THEN RETURN(0) END; (*2*) R:=COMP4(A,B,C,D,SIL); RETURN(R); (*4*) END QRN4; PROCEDURE QINV(R: LIST): LIST; (*Quaternion number inverse. R is a non-zero quaternion number. S R=1. *) VAR S, r, i, j, k, a: LIST; BEGIN (*1*) IF R = 0 THEN ERROR(severe,"QINV: division by zero."); END; (*2*) FIRST4(R,r,i,j,k); a:=RNSUM(RNPROD(r,r),RNPROD(i,i)); a:=RNSUM(a,RNPROD(j,j)); a:=RNSUM(a,RNPROD(k,k)); r:=RNQ(r,a); i:=RNQ(RNNEG(i),a); j:=RNQ(RNNEG(j),a); k:=RNQ(RNNEG(k),a); S:=COMP4(r,i,j,k,SIL); RETURN(S); (*4*) END QINV; PROCEDURE QNEG(R: LIST): LIST; (*Quaternion number negative. R is a quaternion number. S=-R. *) VAR S, r, i, j, k: LIST; BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) FIRST4(R,r,i,j,k); S:=COMP4(RNNEG(r),RNNEG(i),RNNEG(j),RNNEG(k),SIL); RETURN(S); (*4*) END QNEG; PROCEDURE QONE(R: LIST): LIST; (*Quaternion number one. R is a quaternion number. s=1 if R=1, s=0 else. *) VAR r, i, j, k, t: LIST; BEGIN (*1*) IF R = 0 THEN RETURN(0) END; (*2*) FIRST4(R,r,i,j,k); IF (i <> 0) OR (j <> 0) OR (k <> 0) THEN RETURN(0) END; t:=RNONE(r); RETURN(t); (*4*) END QONE; PROCEDURE QPROD(R,S: LIST): LIST; (*Quaternion number product. R and S are quaternion numbers. T=R*S. *) VAR T, r1, i1, j1, k1, r2, i2, j2, k2, r, i, j, k: LIST; BEGIN (*1*) IF (R = 0) OR (S = 0) THEN RETURN(0) END; (*2*) FIRST4(R,r1,i1,j1,k1); FIRST4(S,r2,i2,j2,k2); r:=RNDIF(RNPROD(r1,r2),RNPROD(i1,i2)); r:=RNDIF(r,RNPROD(j1,j2)); r:=RNDIF(r,RNPROD(k1,k2)); i:=RNSUM(RNPROD(r1,i2),RNPROD(i1,r2)); i:=RNSUM(i,RNPROD(j1,k2)); i:=RNDIF(i,RNPROD(k1,j2)); j:=RNDIF(RNPROD(r1,j2),RNPROD(i1,k2)); j:=RNSUM(j,RNPROD(j1,r2)); j:=RNSUM(j,RNPROD(k1,i2)); k:=RNSUM(RNPROD(r1,k2),RNPROD(i1,j2)); k:=RNDIF(k,RNPROD(j1,i2)); k:=RNSUM(k,RNPROD(k1,r2)); IF (r = 0) AND (i = 0) AND (j = 0) AND (k = 0) THEN RETURN(0) END; T:=COMP4(r,i,j,k,SIL); RETURN(T); (*4*) END QPROD; PROCEDURE QQ(R,S: LIST): LIST; (*Quaternion number quotient. R and S are quaternion numbers, S non-zero. T=R/S. *) VAR T: LIST; BEGIN (*1*) T:=QPROD(R,QINV(S)); RETURN(T); (*4*) END QQ; PROCEDURE QRAND(NL: LIST): LIST; (*Quaternion number, random. n is a positive beta-integer. Random rational numbers A and B are generated using RNRAND(n). Then R is the quaternion number with real part A and imaginary part B. *) VAR T, r, i, j, k: LIST; BEGIN (*1*) r:=RNRAND(NL); i:=RNRAND(NL); j:=RNRAND(NL); k:=RNRAND(NL); IF (r = 0) AND (i = 0) AND (j = 0) AND (k = 0) THEN RETURN(0) END; T:=COMP4(r,i,j,k,SIL); RETURN(T); (*4*) END QRAND; PROCEDURE QNREAD(): LIST; (*Quaternion number read. The quaternion number R is read from the input stream. Any preceding blanks are skipped. *) VAR R, r, i, j, k, c: LIST; BEGIN (*1*) r:=RNREAD(); i:=0; j:=0; k:=0; c:=CREADB(); IF c = MASORD("i") THEN i:=RNREAD(); ELSE BKSP END; c:=CREADB(); IF c = MASORD("j") THEN j:=RNREAD(); ELSE BKSP END; c:=CREADB(); IF c = MASORD("k") THEN k:=RNREAD(); ELSE BKSP END; IF (r = 0) AND (i = 0) AND (j = 0) AND (k = 0) THEN RETURN(0) END; R:=COMP4(r,i,j,k,SIL); RETURN(R); (*4*) END QNREAD; PROCEDURE QSUM(R,S: LIST): LIST; (*Quaternion number sum. R and S are quaternion numbers. T=R+S. *) VAR T, r1, i1, j1, k1, r2, i2, j2, k2: LIST; BEGIN (*1*) IF R = 0 THEN T:=S; RETURN(T) END; IF S = 0 THEN T:=R; RETURN(T) END; (*2*) FIRST4(R,r1,i1,j1,k1); FIRST4(S,r2,i2,j2,k2); r1:=RNSUM(r1,r2); i1:=RNSUM(i1,i2); j1:=RNSUM(j1,j2); k1:=RNSUM(k1,k2); IF (r1 = 0) AND (i1 = 0) AND (j1 = 0) AND (k1 = 0) THEN RETURN(0) END; T:=COMP4(r1,i1,j1,k1,SIL); RETURN(T); (*4*) END QSUM; PROCEDURE QNWRITE(R: LIST); (*Quaternion number write. R is a quaternion number. R is converted to decimal and written in the output stream. *) VAR r, i, j, k: LIST; BEGIN (*1*) IF R = 0 THEN AWRITE(R); RETURN END; (*2*) FIRST4(R,r,i,j,k); RNWRIT(r); IF i <> 0 THEN SWRITE(" i "); RNWRIT(i) END; IF j <> 0 THEN SWRITE(" j "); RNWRIT(j) END; IF k <> 0 THEN SWRITE(" k "); RNWRIT(k) END; (*4*) END QNWRITE; END MASQ. (* -EOF- *)