

Generic, Type-safe and Object Oriented Computer Algebra Software

Heinz Kredel, University of Mannheim Raphael Jolly, Databeans

CASC 2010, Tsakhkadzor

Overview

- Motivation and design considerations
- **Run-Time Systems**
- **Object Oriented Software**
- Examples
- **Ring Elements and Polynomials**
- **Unique Factorization Domains**
- Future work and conclusion

Motivation

- software architectural problems with existing CAS
 - monolithic, non modular structure
 - only CLI interfaces to the algorithms
 - ad-hoc run-time memory management
 - non standard interactive scripting languages
- rewrite CAS in object oriented programming and scripting languages
 - Java and Scala vs. Axiom / Aldor
 - are these platforms really suitable ?
 - want to run on new devices and infrastructures

e.g. Smart phones, Cloud computing

Design considerations

Goal : build on other software projects as much as possible - only the parts specific to computer algebra are to be implemented

Three major parts for computer algebra software:

- **run-time** infrastructure with memory management
- statically typed object oriented algorithm libraries
- dynamic interactive scripting interpreters (not in this talk)

Run-Time Systems

- constant maintenance and improvements
- more opportunities for code optimization with just-in-time compilers
- memory management with automatic garbage collection
- exception and security constraint handling
- independence of computer hardware and optimization requirements
- suitable for multi-CPU and distributed computing

Object Oriented Software

- usage of contemporary (object oriented) software engineering principles
- modular software architecture, consisting of
 - usage of existing implementations of basic data structures like integers or lists
 - generic type safe algebraic and symbolic algorithm libraries
 - thread safe and multi-threaded library implementations
 - algebraic objects transportable over the network

Object Oriented Software (cont.)

- high performance implementations of algorithms with state of the art asymptotic complexity but also fast and efficient for small problem sizes
- minimizing the 'abstraction penalty' which occurs for high-level programming languages compared to low-level assembly-like programming languages

Overview

- Motivation and design considerations
- **Run-Time Systems**
- **Object Oriented Software**
- Examples
- **Ring Elements and Polynomials**
- **Unique Factorization Domains**
- Future work and conclusion

Example : Ring Elements and Polynomials

- polynomials = basis of many algebraic algorithms => are of utmost importance
- devise a 'most' general polynomial class
 - with arbitrary coefficients from some ring
 - which are self usable as coefficients
- polynomials with different types of coefficients should have a different type
- provide abstractions / parametrizations for exponents, memory allocation and more

Element

```
object Element {
   trait Factory[T <: Element[T]] {</pre>
      def random(numbits: Int)(implicit rnd:
                                 scala.util.Random): T
trait Element[T <: Element[T]] extends Ordered[T] { this:
T =>
   val factory: Element.Factory[T]
   def equals(that: T) = this.compare(that) == 0
   def ><(that: T) = this equals that
   def <>(that: T) = !(this equals that)
```


Abelian Group

```
object AbelianGroup {
   trait Factory[T <: AbelianGroup[T]] extends Element.Factory[T] {</pre>
       def zero: T
trait AbelianGroup[T <: AbelianGroup[T]] extends Element[T] { this:
T =>
   override val factory: AbelianGroup.Factory[T]
   def isZero = this >< factory.zero
   def +(that: T): T
   def -(that: T): T
   def unary + = this
   def unary - = factory.zero - this
   def abs = if (signum < 0) -this else this
   def signum: Int
```


SemiGroup

```
trait SemiGroup[T <: SemiGroup[T]] extends Element[T] {
  this: T =>
    def *(that: T): T
}
```


Monoid

```
object Monoid {
   trait Factory[T <: Monoid[T]] extends Element.Factory[T] {</pre>
       def one: T
trait Monoid[T <: Monoid[T]] extends SemiGroup[T] { this: T = >
   override val factory: Monoid.Factory[T]
   def isUnit: Boolean
   def isOne = this >< factory.one
   def pow(exp: BigInt) = \{
       assert (exp \geq 0)
       (factory.one /: (1 to exp.intValue)) {
          (I, r) => I * this
```


Ring

```
object Ring {
   trait Factory[T <: Ring[T]] extends</pre>
AbelianGroup.Factory[T] with Monoid.Factory[T] {
      def characteristic: BigInt
trait Ring[T <: Ring[T]] extends AbelianGroup[T] with
Monoid[T] { this: T = >
   override val factory: Ring.Factory[T]
```


Polynomial

```
object Polynomial {
   class Factory[C <: Ring[C]](val ring: C, val variables: Array[Variable],
val ordering: Comparator[Int]) extends Ring.Factory[Polynomial[C]] {
       def generators: Array[Polynomial[C]]
       def apply(value: SortedMap[Array[Int], C]) = new Polynomial(this)
(value)
       override def toString: String
class Polynomial[C <: Ring[C]](val factory: Polynomial.Factory[C])(val
value: SortedMap[Array[Int], C]) extends Ring[Polynomial[C]] {
   def elements: Iterator[Pair[Array[Int], C]]
   def headTerm = elements.next
   def degree: Int
   def isUnit = !this.isZero && degree == 0 && headTerm. 2.isUnit
   override def toString: String
```


Polynomial (cont.)

```
object Polynomial {
    trait Factory[T <: Polynomial[T, C], C <: Ring[C]] extends
Ring.Factory[T] {
        def multiply(w: T, x: Array[Int], y: C) = {
            // commutative case
            }
        }
    }
trait Polynomial[T <: Polynomial[T, C], C <: Ring[C]] extends Ring[T]</pre>
```

```
object SolvablePolynomial {
    trait Factory[T <: Polynomial[T, C], C <: Ring[C]] extends
Polynomial.Factory[T, C] {
    override def multiply(w: T, x: Array[Int], y: C) = {
        // non-commutative case
        }
    }
}</pre>
```


Modularity of the design

Elements can be parametrized over:

- the coefficient type (C, above)
- the underlying data structure (array, list, tree)
- the type of the exponents
- the choice of algorithm for gcd computation
- Polynomial or SolvablePolynomial
- Not yet implemented:
 - improved parametrization of the exponents' type through Scala type specialization
 - the list of variables and the ordering (requires dependent types)

Example : Unique Factorization Domains

exemplify the usefulness of object oriented software for larger algebraic libraries

algorithms in UFDs to factor polynomials

- Greatest Common Divisor computation
- Squarefree decomposition/factorization
- Factorization

example: generic factorization over $\mathbb{Q}(\sqrt{2})(x)(\sqrt{x})$

Unique factorization domains

elements of a UFD can be written as polynomial rings over **UFDs** are **UFDs** Gauss Lemma primitive part squarefree

squarefree factorization

$$a = u p_1^{e_i} \dots p_n^{e_n}$$
 compute this

$$R = UFD[x_1, \dots, x_n]$$

$$cont(ab) = cont(a) \ cont(b)$$

$$a = cont(a) \ pp(a)$$

$$\frac{a}{gcd(a,a')} \ is squarefree$$

$$a = a_1^1 \dots a_d^d$$

Greatest Common Divisors

Interface GreatestCommonDivisor

abstract class GreatestCommonDivisorAbstract

implements gcd, lcm, content, primitive part, co-prime lists and tests

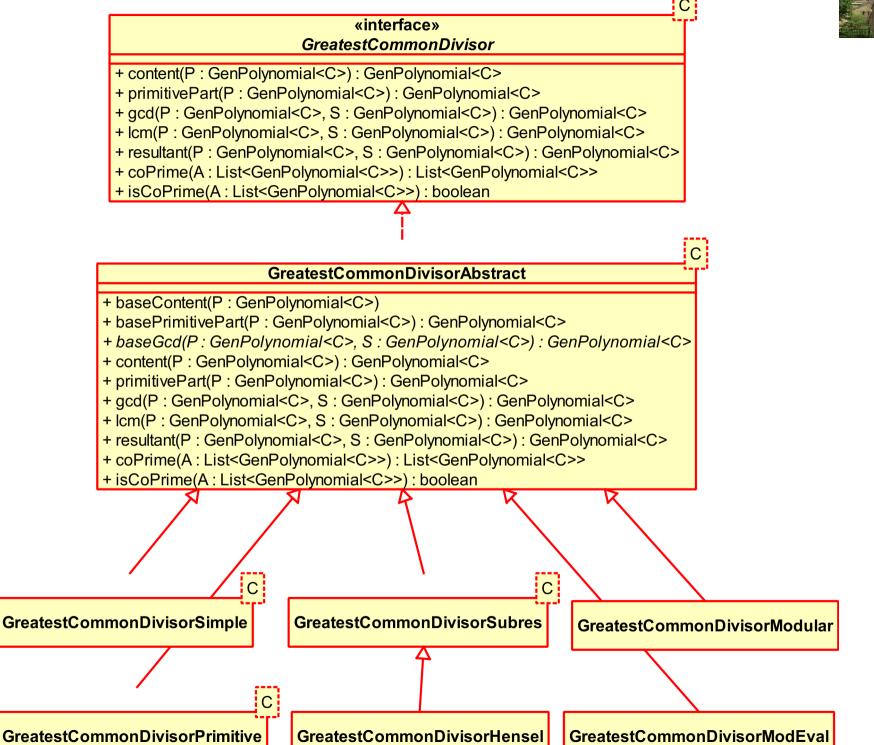
baseGCD() and recursiveUnivariateGCD() are
 abstract

other classes for different coefficient rings

- generic variants for any field coefficient ring
- modular variants for specific coefficients

GCD implementations

- Polynomial remainder sequences (PRS)
 - primitive PRS
 - simple / monic PRS
 - sub-resultant PRS
- modular methods
 - modular coefficients, Chinese remaindering (CR)
 - recursion by modular evaluation and CR
 - modular coefficients, Hensel lifting wrt. p^e
 - recursion by multivariate Hensel lifting



GCD factory

- all gcd variants have pros and cons
 - computing times differ in a wide range
 - coefficient rings enable specific treatment
- solve by object-oriented factory design pattern: a factory class creates and provides a suitable implementation via different methods

GreatestCommonDivisor<C>

GCDFactory.<C>getImplementation(cfac);

- type C and type of cfac triggers selection at compile time
- coefficient factory cfac triggers selection at runtime

GCD proxy

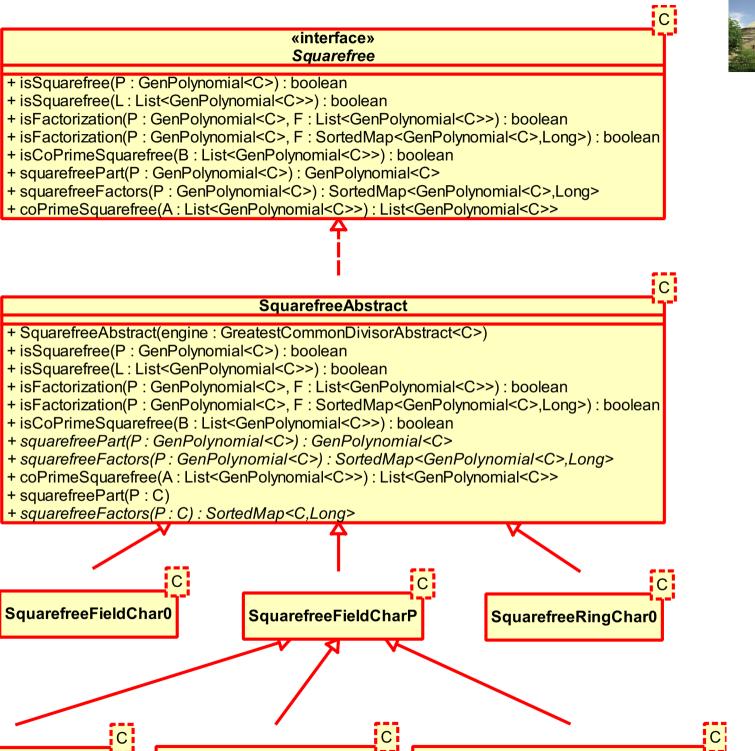
- variable performance of algorithms
 - mostly modular methods are faster
 - but some times (sub-resultant) PRS faster
- hard to predict run-time of algorithm for inputs
- improvement by speculative parallelism
- execute two (or more) algorithms in parallel

java.util.concurrent.ExecutorService.invokeAny()

- executes several methods in parallel
- when one finishes the others are interrupted

Squarefree decomposition

- interface Squarefree
- abstract class SquarefreeAbstract
 - implements tests and co-prime squarefree set construction
 - squarefreeFactors(), squarefreePart() abstract
- other classes for different coefficient rings
 - ring or fields of characteristic zero
 - fields of characteristic p > 0
 - finite fields
 - infinite fields, transcendental extensions
 - algebraic extensions of infinite fields



SquarefreeInfiniteAlgebraicFieldCharP

SquarefreeFiniteFieldCharP

Squarefree factory

- selection based on given type parameter and coefficient ring factory
- generic relative to characteristic of the ring
- special cases for characteristic p > 0
 - transcendental field extensions, coefficients from class Quotient
 SquarefreeInfiniteFieldCharP
 - algebraic field extensions of transcendental extensions, coefficients from class
 AlgebraicNumber
 SquarefreeInfiniteAlgebraicField-CharP

Factorization

interface Factorization

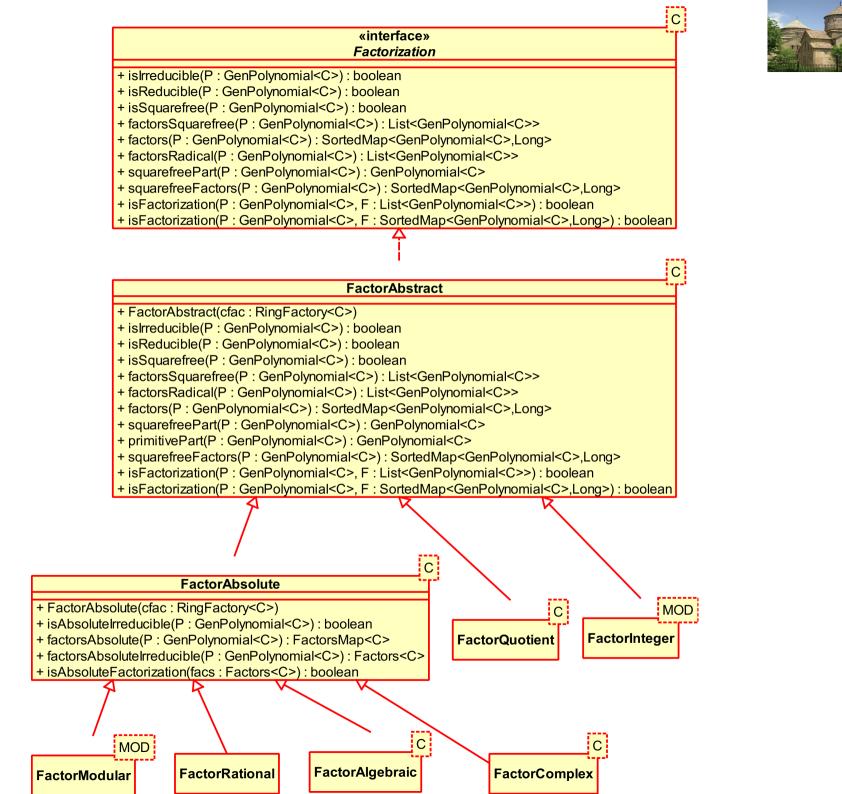
abstract class FactorAbstract

- implements nearly everything, only baseFactorSquarefree() must be implemented for each coefficient ring
- uses (slow) Kronecker substitution for reduction to univariate case and multivariate reconstruction

multivariate Hensel lifting in the future

class FactorAbsolute for splitting fields

- extend coefficient ring until factors become linear
- abstract and intermediate between FactorAbstract



Factorization (cont.)

FactorModular

- implements distinctDegreeFactor() and equalDegreeFactor()

Berlekamp algorithm in the future

FactorInteger

 computes modulo primes, lifts with Hensel and does combinatorial factor search

FactorRational

clears denominators and uses factorization over integers

Factorization (cont.)

FactorAlgebraic

- for algebraic field extensions for arbitrary coefficient rings
 - first for modular and rational coefficients
 - also for Quotient and AlgebraicNumber
- computes norm, then factors norm
- use gcds between factors of norm and polynomial

FactorQuotient

- for transcendental field extensions for arbitrary coefficient rings
- clears denominators, then factors multivariate polynomial over the next coefficient ring

Factorization factory

- selection based on given type parameter and coefficient ring factory
- implementations for mentioned coefficient rings
- generic cases for polynomial coefficients
 - transcendental field extensions, coefficients from class Quotient: FactorQuotient
 - algebraic field extensions, coefficients from class AlgebraicNumber: FactorAlgebraic
- factory used to select implementation step by step as coefficient rings uncover

see following example

Factorization example

mathematical Ring

 $\mathbb{Q}(\sqrt{2})(x)(\sqrt{x})[v]$

Ring in jython

polynomial

factors

PolyRing(AN((wx**2 - x),True, PolyRing(RF(PolyRing(AN((w2**2 -2),True, PolyRing(QQ(),"w2",PolyRing.lex)), "x",PolyRing.lex)), "wx",PolyRing.lex)), "y",PolyRing.lex)

$$x = y^{**}4 - (x + 2) y^{**}2 + 2 x = (y^{**}2 - x) (y^{**}2 - 2)$$

$$h = (y - wx)$$

$$h = (y - w2)$$

$$h = (y + wx)$$

$$h = (y + w2)$$

$$wx = \sqrt{x}$$

$$w2 = \sqrt{2}$$

factor time = 11168 milliseconds

Example is in: examples/factors_algeb_trans.py

Categorical factorization

- first in Scratchpad (now Axiom)
- factorization of multivariate polynomials over arbitrarily nested coefficient rings provided there is an algorithm for univariate polynomials over such a coefficient ring
- sequence of factorizations $\mathbb{Q}(\sqrt{2})(x)(\sqrt{x})[y]$ given
- selection via factory $\rightarrow (\mathbb{Q}(\sqrt{2})(x))(\sqrt{x})[y]$ algebraic
 - $\rightarrow \mathbb{Q}(\sqrt{2})(x)[wx]$ transcendent
 - $\rightarrow \mathbb{Q}(\sqrt{2})[x, wx] \rightarrow \mathbb{Q}(\sqrt{2})[z]$
 - $\rightarrow \mathbb{Q}[w2,z] \rightarrow \mathbb{Q}[z'] \rightarrow \mathbb{Z}[z'] \rightarrow \mathbb{Z}_p[z']$

Overview

- Motivation and design considerations
- **Run-Time Systems**
- **Object Oriented Software**
- Examples
- **Ring Elements and Polynomials**
- **Unique Factorization Domains**
- Future work and conclusion

Future work

(remaining) problems with existing object oriented languages

- interface type parameter adaption in sub-classes
- "extend" polynomial type by
 - number of variables
 - names of variables
- enhance polynomial implementation by gcd or factorization vs. separate class hierarchies for gcd or factorization

Future work (cont.)

- using existing rich client platforms like Eclipse by MathEclipse
- using webservice and Cloud computing platforms, like Google App Engine by Symja
- use the scripting ability of Android to make computer algebra available on mobile phones
- define a common interface with Apache Commons Math and/or JLinAlg
- Maxima, Reduce could run on the JVM
- MathML/OpenMath easy to use in Java

Conclusions (1)

- can concentrate on mathematical aspects by
 - re-using software components
 - Java and Scala language with JVM run-time
 - interactive scripting languages
- JVM infrastructure opens new ways of
 - interoperability of computer algebra systems on Java byte-code level
 - gives also new opportunities to provide CAS
 - on new computing devices
 - software as a service
 - distributed or cloud computing

Conclusions (2)

- CAS design and implementation by leveraging 30 years of advances in computer science
- object oriented approach with the Java and Scala programming languages
 - can implement non-trivial algebraic structures
 - in a type-safe way
 - with competitive performance
 - can be stacked and plugged together in various ways

Thank you for your attention

- Questions ?
- Comments ?
- http://jscl-meditor.sourceforge.net/
- http://krum.rz.uni-mannheim.de/jas/
- Acknowledgments
 - thanks to: Thomas Becker, Werner K. Seiler, Axel Kramer, Dongming Wang, Thomas Sturm, Hans-Günther Kruse, Markus Aleksy
 - thanks to the referees