
Generic, Type-safe and Object
Oriented Computer Algebra

Software

Heinz Kredel, University of Mannheim
Raphael Jolly, Databeans

CASC 2010, Tsakhkadzor

Overview

Motivation and design considerations

Run-Time Systems

Object Oriented Software

Examples

Ring Elements and Polynomials

Unique Factorization Domains

Future work and conclusion

Motivation
● software architectural problems with existing CAS

– monolithic, non modular structure

– only CLI interfaces to the algorithms

– ad-hoc run-time memory management

– non standard interactive scripting languages

● rewrite CAS in object oriented programming and
scripting languages
– Java and Scala vs. Axiom / Aldor

– are these platforms really suitable ?

– want to run on new devices and infrastructures
e.g. Smart phones, Cloud computing

Design considerations

Goal : build on other software projects as much
as possible - only the parts specific to computer
algebra are to be implemented

Three major parts for computer algebra software:
● run-time infrastructure with memory

management
● statically typed object oriented algorithm
libraries

● dynamic interactive scripting interpreters (not in
this talk)

Run-Time Systems

● constant maintenance and improvements
● more opportunities for code optimization with

just-in-time compilers
● memory management with automatic garbage

collection
● exception and security constraint handling
● independence of computer hardware and

optimization requirements
● suitable for multi-CPU and distributed computing

Object Oriented Software

● usage of contemporary (object oriented)
software engineering principles

● modular software architecture, consisting of
– usage of existing implementations of basic data

structures like integers or lists

– generic type safe algebraic and symbolic algorithm
libraries

– thread safe and multi-threaded library
implementations

– algebraic objects transportable over the network

Object Oriented Software (cont.)

● high performance implementations of
algorithms with state of the art asymptotic
complexity but also fast and efficient for small
problem sizes

● minimizing the ‘abstraction penalty’ which
occurs for high-level programming languages
compared to low-level assembly-like
programming languages

Overview

Motivation and design considerations

Run-Time Systems

Object Oriented Software

Examples

Ring Elements and Polynomials

Unique Factorization Domains

Future work and conclusion

Example : Ring Elements and
Polynomials

● polynomials = basis of many algebraic algorithms
=> are of utmost importance

● devise a 'most' general polynomial class
– with arbitrary coefficients from some ring

– which are self usable as coefficients

● polynomials with different types of coefficients
should have a different type

● provide abstractions / parametrizations for
exponents, memory allocation and more

Element

object Element {
trait Factory[T <: Element[T]] {

def random(numbits: Int)(implicit rnd:
 scala.util.Random): T

}
}
trait Element[T <: Element[T]] extends Ordered[T] { this:
T =>

val factory: Element.Factory[T]
def equals(that: T) = this.compare(that) == 0
def ><(that: T) = this equals that
def <>(that: T) = !(this equals that)

}

Abelian Group
object AbelianGroup {

trait Factory[T <: AbelianGroup[T]] extends Element.Factory[T] {
def zero: T

}
}
trait AbelianGroup[T <: AbelianGroup[T]] extends Element[T] { this:
T =>

override val factory: AbelianGroup.Factory[T]
def isZero = this >< factory.zero
def +(that: T): T
def -(that: T): T
def unary_+ = this
def unary_- = factory.zero - this
def abs = if (signum < 0) -this else this
def signum: Int

}

SemiGroup

trait SemiGroup[T <: SemiGroup[T]] extends Element[T] {
this: T =>

def *(that: T): T
}

Monoid
object Monoid {

trait Factory[T <: Monoid[T]] extends Element.Factory[T] {
def one: T

}
}
trait Monoid[T <: Monoid[T]] extends SemiGroup[T] { this: T =>

override val factory: Monoid.Factory[T]
def isUnit: Boolean
def isOne = this >< factory.one
def pow(exp: BigInt) = {

assert (exp >= 0)
(factory.one /: (1 to exp.intValue)) {

(l, r) => l * this
}

}
}

Ring

object Ring {
trait Factory[T <: Ring[T]] extends

AbelianGroup.Factory[T] with Monoid.Factory[T] {
def characteristic: BigInt

}
}
trait Ring[T <: Ring[T]] extends AbelianGroup[T] with
Monoid[T] { this: T =>

override val factory: Ring.Factory[T]
}

Polynomial
object Polynomial {

class Factory[C <: Ring[C]](val ring: C, val variables: Array[Variable],
val ordering: Comparator[Int]) extends Ring.Factory[Polynomial[C]] {

def generators: Array[Polynomial[C]]
def apply(value: SortedMap[Array[Int], C]) = new Polynomial(this)

(value)
override def toString: String

}
}
class Polynomial[C <: Ring[C]](val factory: Polynomial.Factory[C])(val
value: SortedMap[Array[Int], C]) extends Ring[Polynomial[C]] {

def elements: Iterator[Pair[Array[Int], C]]
def headTerm = elements.next
def degree: Int
def isUnit = !this.isZero && degree == 0 && headTerm._2.isUnit
override def toString: String

}

Polynomial (cont.)
object Polynomial {

trait Factory[T <: Polynomial[T, C], C <: Ring[C]] extends
Ring.Factory[T] {

def multiply(w: T, x: Array[Int], y: C) = {
// commutative case

}
}

}
trait Polynomial[T <: Polynomial[T, C], C <: Ring[C]] extends Ring[T]

object SolvablePolynomial {
trait Factory[T <: Polynomial[T, C], C <: Ring[C]] extends

Polynomial.Factory[T, C] {
override def multiply(w: T, x: Array[Int], y: C) = {

// non-commutative case
}

}
}

Modularity of the design

Elements can be parametrized over:
– the coefficient type (C, above)

– the underlying data structure (array, list, tree)

– the type of the exponents

– the choice of algorithm for gcd computation

– Polynomial or SolvablePolynomial

Not yet implemented:
● improved parametrization of the exponents' type through

Scala type specialization
● the list of variables and the ordering (requires dependent

types)

Example : Unique Factorization Domains

exemplify the usefulness of object oriented
software for larger algebraic libraries

algorithms in UFDs to factor polynomials
– Greatest Common Divisor computation

– Squarefree decomposition/factorization

– Factorization

example: generic factorization over ℚ2 x x

Unique factorization domains

elements of a UFD can
be written as

polynomial rings over
UFDs are UFDs

Gauss Lemma

primitive part

squarefree

squarefree factorization

a = u p1
ei pn

en

cont a b = cont a cont b

a = cont a pp a
a

gcd a ,a '
is squarefree

a = a1
1 ad

d

R = UFD [x1 , , xn]

compute this

Greatest Common Divisors

Interface GreatestCommonDivisor

abstract class GreatestCommonDivisorAbstract

implements gcd, lcm, content, primitive part, co-prime
lists and tests

baseGCD() and recursiveUnivariateGCD() are
abstract

other classes for different coefficient rings
– generic variants for any field coefficient ring

– modular variants for specific coefficients

GCD implementations

● Polynomial remainder sequences (PRS)
– primitive PRS

– simple / monic PRS

– sub-resultant PRS

● modular methods
– modular coefficients, Chinese remaindering (CR)

– recursion by modular evaluation and CR

– modular coefficients, Hensel lifting wrt.

– recursion by multivariate Hensel lifting

pe

GCD factory
● all gcd variants have pros and cons

– computing times differ in a wide range

– coefficient rings enable specific treatment

● solve by object-oriented factory design pattern:
a factory class creates and provides a suitable
implementation via different methods

GreatestCommonDivisor<C>
GCDFactory.<C>getImplementation(cfac);

– type C and type of cfac triggers selection at compile
time

– coefficient factory cfac triggers selection at runtime

GCD proxy

● variable performance of algorithms
– mostly modular methods are faster

– but some times (sub-resultant) PRS faster

● hard to predict run-time of algorithm for inputs
● improvement by speculative parallelism
● execute two (or more) algorithms in parallel

java.util.concurrent.ExecutorService.invokeAny()
– executes several methods in parallel

– when one finishes the others are interrupted

Squarefree decomposition

interface Squarefree

abstract class SquarefreeAbstract

implements tests and co-prime squarefree set
construction

squarefreeFactors(), squarefreePart() abstract

other classes for different coefficient rings
– ring or fields of characteristic zero

– fields of characteristic p > 0
● finite fields
● infinite fields, transcendental extensions
● algebraic extensions of infinite fields

Squarefree factory

● selection based on given type parameter and
coefficient ring factory

● generic relative to characteristic of the ring
● special cases for characteristic p > 0

– transcendental field extensions, coefficients from
class Quotient
SquarefreeInfiniteFieldCharP

– algebraic field extensions of transcendental
extensions, coefficients from class
AlgebraicNumber
SquarefreeInfiniteAlgebraicField-CharP

Factorization

interface Factorization

abstract class FactorAbstract
– implements nearly everything, only
baseFactorSquarefree() must be implemented
for each coefficient ring

– uses (slow) Kronecker substitution for reduction to
univariate case and multivariate reconstruction

multivariate Hensel lifting in the future

class FactorAbsolute for splitting fields
– extend coefficient ring until factors become linear

– abstract and intermediate between FactorAbstract

Factorization (cont.)

FactorModular

– implements distinctDegreeFactor() and
equalDegreeFactor()

Berlekamp algorithm in the future

FactorInteger

– computes modulo primes, lifts with Hensel and
does combinatorial factor search

FactorRational

– clears denominators and uses factorization over
integers

Factorization (cont.)

FactorAlgebraic

– for algebraic field extensions for arbitrary coefficient
rings

● first for modular and rational coefficients
● also for Quotient and AlgebraicNumber

– computes norm, then factors norm

– use gcds between factors of norm and polynomial

FactorQuotient

– for transcendental field extensions for arbitrary
coefficient rings

– clears denominators, then factors multivariate
polynomial over the next coefficient ring

Factorization factory

● selection based on given type parameter and
coefficient ring factory

● implementations for mentioned coefficient rings
● generic cases for polynomial coefficients

– transcendental field extensions, coefficients from class
Quotient: FactorQuotient

– algebraic field extensions, coefficients from class
AlgebraicNumber: FactorAlgebraic

● factory used to select implementation step by step
as coefficient rings uncover

see following example

Factorization example

ℚ2 x x[y]
PolyRing(AN((wx**2 - x),True,
 PolyRing(RF(
 PolyRing(AN((w2**2 -2),True,
 PolyRing(QQ(),"w2",PolyRing.lex)),
 "x",PolyRing.lex)),
 "wx",PolyRing.lex)),
"y",PolyRing.lex)

f = y**4 - (x + 2) y**2 + 2 x = (y**2 – x) (y**2 - 2)

h = (y - wx)
h = (y - w2)
h = (y + wx)
h = (y + w2)

factor time = 11168 milliseconds

mathematical Ring

Ring in jython

polynomial

factors wx= x

w2=2

Example is in: examples/factors_algeb_trans.py

Categorical factorization

● first in Scratchpad (now Axiom)
● factorization of multivariate polynomials over

arbitrarily nested coefficient rings provided
there is an algorithm for univariate polynomials
over such a coefficient ring

● sequence of factorizations
● selection via factory

ℚ2 x x[y]

 ℚ2xx [y]

 ℚ2[x ,wx] ℚ2[z]

 ℚ2x [wx]

 ℚ[w2 , z] ℚ[z '] ℤ[z '] ℤp [z ']

given

algebraic

transcendent

Overview

Motivation and design considerations

Run-Time Systems

Object Oriented Software

Examples

Ring Elements and Polynomials

Unique Factorization Domains

Future work and conclusion

Future work

(remaining) problems with existing object oriented
languages

– interface type parameter adaption in sub-classes

– “extend” polynomial type by
● number of variables
● names of variables

– enhance polynomial implementation by gcd or
factorization vs. separate class hierarchies for gcd
or factorization

Future work (cont.)

● using existing rich client platforms like Eclipse
by MathEclipse

● using webservice and Cloud computing
platforms, like Google App Engine by Symja

● use the scripting ability of Android to make
computer algebra available on mobile phones

● define a common interface with Apache
Commons Math and/or JLinAlg

● Maxima, Reduce could run on the JVM
● MathML/OpenMath easy to use in Java

Conclusions (1)

● can concentrate on mathematical aspects by
– re-using software components

– Java and Scala language with JVM run-time

– interactive scripting languages

● JVM infrastructure opens new ways of
– interoperability of computer algebra systems on

Java byte-code level

– gives also new opportunities to provide CAS
● on new computing devices
● software as a service
● distributed or cloud computing

Conclusions (2)

● CAS design and implementation by leveraging
30 years of advances in computer science

● object oriented approach with the Java and
Scala programming languages
– can implement non-trivial algebraic structures

– in a type-safe way

– with competitive performance

– can be stacked and plugged together in various
ways

Thank you for your attention

Questions ?

Comments ?

http://jscl-meditor.sourceforge.net/

http://krum.rz.uni-mannheim.de/jas/

Acknowledgments

thanks to: Thomas Becker, Werner K. Seiler, Axel
Kramer, Dongming Wang, Thomas Sturm, Hans-
Günther Kruse, Markus Aleksy

thanks to the referees

http://jscl-meditor.sourceforge.net/
http://krum.rz.uni-mannheim.de/jas/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

