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Motivation
● software architectural problems with existing CAS

– monolithic, non modular structure

– only CLI interfaces to the algorithms

– ad-hoc run-time memory management 

– non standard interactive scripting languages 

● rewrite CAS in object oriented programming and 
scripting languages
– Java and Scala vs. Axiom / Aldor

– are these platforms really suitable ?

– want to run on new devices and infrastructures
e.g. Smart phones, Cloud computing



Design considerations

Goal : build on other software projects as much 
as possible - only the parts specific to computer 
algebra are to be implemented

Three major parts for computer algebra software:
● run-time infrastructure with memory 

management
● statically typed object oriented algorithm 
libraries

● dynamic interactive scripting interpreters (not in 
this talk)



Run-Time Systems

● constant maintenance and improvements
● more opportunities for code optimization with 

just-in-time compilers
● memory management with automatic garbage 

collection
● exception and security constraint handling
● independence of computer hardware and 

optimization requirements
● suitable for multi-CPU and distributed computing



Object Oriented Software

● usage of contemporary (object oriented) 
software engineering principles

● modular software architecture, consisting of
– usage of existing implementations of basic data 

structures like integers or lists

– generic type safe algebraic and symbolic algorithm 
libraries

– thread safe and multi-threaded library 
implementations

– algebraic objects transportable over the network



Object Oriented Software (cont.)

● high performance implementations of 
algorithms with state of the art asymptotic 
complexity but also fast and efficient for small 
problem sizes

● minimizing the ‘abstraction penalty’ which 
occurs for high-level programming languages 
compared to low-level assembly-like 
programming languages
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Example : Ring Elements and 
Polynomials

● polynomials = basis of many algebraic algorithms 
=> are of utmost importance

● devise a 'most' general polynomial class
– with arbitrary coefficients from some ring

– which are self usable as coefficients

● polynomials with different types of coefficients 
should have a different type

● provide abstractions / parametrizations for 
exponents, memory allocation and more



Element 

object Element {
trait Factory[T <: Element[T]] {

def random(numbits: Int)(implicit rnd:
                                                  scala.util.Random): T

}
}
trait Element[T <: Element[T]] extends Ordered[T] { this: 
T =>

val factory: Element.Factory[T]
def equals(that: T) = this.compare(that) == 0
def ><(that: T) = this equals that
def <>(that: T) = !(this equals that)

}



Abelian Group
object AbelianGroup {

trait Factory[T <: AbelianGroup[T]] extends Element.Factory[T] {
def zero: T

}
}
trait AbelianGroup[T <: AbelianGroup[T]] extends Element[T] { this: 
T =>

override val factory: AbelianGroup.Factory[T]
def isZero = this >< factory.zero
def +(that: T): T
def -(that: T): T
def unary_+ = this
def unary_- = factory.zero - this
def abs = if (signum < 0) -this else this
def signum: Int

}



SemiGroup

trait SemiGroup[T <: SemiGroup[T]] extends Element[T] { 
this: T =>

def *(that: T): T
}



Monoid
object Monoid {

trait Factory[T <: Monoid[T]] extends Element.Factory[T] {
def one: T

}
}
trait Monoid[T <: Monoid[T]] extends SemiGroup[T] { this: T =>

override val factory: Monoid.Factory[T]
def isUnit: Boolean
def isOne = this >< factory.one
def pow(exp: BigInt) = {

assert (exp >= 0)
(factory.one /: (1 to exp.intValue)) {

(l, r) => l * this
}

}
}



Ring

object Ring {
trait Factory[T <: Ring[T]] extends 

AbelianGroup.Factory[T] with Monoid.Factory[T] {
def characteristic: BigInt

}
}
trait Ring[T <: Ring[T]] extends AbelianGroup[T] with 
Monoid[T] { this: T =>

override val factory: Ring.Factory[T]
}



Polynomial
object Polynomial {

class Factory[C <: Ring[C]](val ring: C, val variables: Array[Variable], 
val ordering: Comparator[Int]) extends Ring.Factory[Polynomial[C]] {

def generators: Array[Polynomial[C]]
def apply(value: SortedMap[Array[Int], C]) = new Polynomial(this)

(value)
override def toString: String

}
}
class Polynomial[C <: Ring[C]](val factory: Polynomial.Factory[C])(val 
value: SortedMap[Array[Int], C]) extends Ring[Polynomial[C]] {

def elements: Iterator[Pair[Array[Int], C]]
def headTerm = elements.next
def degree: Int
def isUnit = !this.isZero && degree == 0 && headTerm._2.isUnit
override def toString: String

}



Polynomial (cont.)
object Polynomial {

trait Factory[T <: Polynomial[T, C], C <: Ring[C]] extends 
Ring.Factory[T] {

def multiply(w: T, x: Array[Int], y: C) = {
// commutative case

}
}

}
trait Polynomial[T <: Polynomial[T, C], C <: Ring[C]] extends Ring[T]

object SolvablePolynomial {
trait Factory[T <: Polynomial[T, C], C <: Ring[C]] extends 

Polynomial.Factory[T, C] {
override def multiply(w: T, x: Array[Int], y: C) = {

// non-commutative case
}

}
}



Modularity of the design

Elements can be parametrized over:
– the coefficient type (C, above)

– the underlying data structure (array, list, tree)

– the type of the exponents

– the choice of algorithm for gcd computation

– Polynomial or SolvablePolynomial

Not yet implemented:
● improved parametrization of the exponents' type through 

Scala type specialization
● the list of variables and the ordering (requires dependent 

types)



Example : Unique Factorization Domains

exemplify the usefulness of object oriented 
software for larger algebraic libraries

algorithms in UFDs to factor polynomials
– Greatest Common Divisor computation

– Squarefree decomposition/factorization

– Factorization

example: generic factorization over ℚ2 x x



Unique factorization domains

elements of a UFD can 
be written as

polynomial rings over 
UFDs are UFDs

Gauss Lemma

primitive part

squarefree

squarefree factorization

a = u p1
ei  pn

en

cont a b = cont a cont b

a = cont a pp a 
a

gcd a ,a ' 
is squarefree

a = a1
1  ad

d

R = UFD [ x1 ,  , xn ]

compute this



Greatest Common Divisors

Interface GreatestCommonDivisor

abstract class GreatestCommonDivisorAbstract

implements gcd, lcm, content, primitive part, co-prime 
lists and tests

baseGCD() and recursiveUnivariateGCD() are 
abstract

other classes for different coefficient rings
– generic variants for any field coefficient ring

– modular variants for specific coefficients   



GCD implementations

● Polynomial remainder sequences (PRS)
– primitive PRS

– simple / monic PRS

– sub-resultant PRS

● modular methods
– modular coefficients, Chinese remaindering (CR)

– recursion by modular evaluation and CR

– modular coefficients, Hensel lifting wrt. 

– recursion by multivariate Hensel lifting

pe





GCD factory
● all gcd variants have pros and cons

– computing times differ in a wide range

– coefficient rings enable specific treatment

● solve by object-oriented factory design pattern: 
a factory class creates and provides a suitable 
implementation via different methods

GreatestCommonDivisor<C>  
GCDFactory.<C>getImplementation( cfac );

– type C and type of cfac triggers selection at compile 
time

– coefficient factory cfac triggers selection at runtime



GCD proxy

● variable performance of algorithms
– mostly modular methods are faster

– but some times (sub-resultant) PRS faster

● hard to predict run-time of algorithm for inputs
● improvement by speculative parallelism
● execute two (or more) algorithms in parallel

java.util.concurrent.ExecutorService.invokeAny() 
– executes several methods in parallel

– when one finishes the others are interrupted



Squarefree decomposition

interface Squarefree

abstract class SquarefreeAbstract

implements tests and co-prime squarefree set 
construction

squarefreeFactors(), squarefreePart() abstract

other classes for different coefficient rings
– ring or fields of characteristic zero

– fields of characteristic p > 0
● finite fields
● infinite fields, transcendental extensions
● algebraic extensions of infinite fields





Squarefree factory

● selection based on given type parameter and 
coefficient ring factory

● generic relative to characteristic of the ring
● special cases for characteristic p > 0

– transcendental field extensions, coefficients from 
class Quotient 
SquarefreeInfiniteFieldCharP

– algebraic field extensions of transcendental 
extensions, coefficients from class 
AlgebraicNumber 
SquarefreeInfiniteAlgebraicField-CharP



Factorization

interface Factorization

abstract class FactorAbstract 
– implements nearly everything, only 
baseFactorSquarefree() must be implemented 
for each coefficient ring

– uses (slow) Kronecker substitution for reduction to 
univariate case and multivariate reconstruction

multivariate Hensel lifting in the future

class FactorAbsolute for splitting fields
– extend coefficient ring until factors become linear

– abstract and intermediate between FactorAbstract





Factorization (cont.)

FactorModular

– implements distinctDegreeFactor() and 
equalDegreeFactor()

Berlekamp algorithm in the future

FactorInteger

– computes modulo primes, lifts with Hensel and 
does combinatorial factor search

FactorRational

– clears denominators and uses factorization over 
integers 



Factorization (cont.)

FactorAlgebraic

– for algebraic field extensions for arbitrary coefficient 
rings

● first for modular and rational coefficients
● also for Quotient and AlgebraicNumber

– computes norm, then factors norm

– use gcds between factors of norm and polynomial

FactorQuotient

– for transcendental field extensions for arbitrary 
coefficient rings

– clears denominators, then factors multivariate 
polynomial over the next coefficient ring



Factorization factory

● selection based on given type parameter and 
coefficient ring factory

● implementations for mentioned coefficient rings
● generic cases for polynomial coefficients

– transcendental field extensions, coefficients from class 
Quotient: FactorQuotient

– algebraic field extensions, coefficients from class 
AlgebraicNumber: FactorAlgebraic

● factory used to select implementation step by step 
as coefficient rings uncover

see following example



Factorization example

ℚ2 x x[ y ]
PolyRing(AN(( wx**2 - x ),True,
     PolyRing(RF(
          PolyRing(AN(( w2**2 -2 ),True, 
               PolyRing(QQ(),"w2",PolyRing.lex)),
          "x",PolyRing.lex)),
     "wx",PolyRing.lex)),
"y",PolyRing.lex)

f =  y**4 - (x + 2) y**2 + 2 x   =   (y**2 – x) (y**2 - 2)

h    =  ( y - wx )
h    =  ( y - w2 )
h    =  ( y + wx )
h    =  ( y + w2 )

factor time = 11168 milliseconds

mathematical Ring

Ring in jython 

polynomial

factors wx= x

w2=2

Example is in: examples/factors_algeb_trans.py



Categorical factorization

● first in Scratchpad (now Axiom)
● factorization of multivariate polynomials over 

arbitrarily nested coefficient rings provided 
there is an algorithm for univariate polynomials 
over such a coefficient ring

● sequence of factorizations
● selection via factory

ℚ2 x x[ y ]

 ℚ2xx [ y ]

 ℚ2[ x ,wx ]  ℚ2[ z ]

 ℚ2x [wx ]

 ℚ[w2 , z ]  ℚ[ z ' ]  ℤ[ z ' ]  ℤp [ z ' ]

given

algebraic

transcendent
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Future work

(remaining) problems with existing object oriented 
languages

– interface type parameter adaption in sub-classes

– “extend” polynomial type by 
● number of variables
● names of variables

– enhance polynomial implementation by gcd or 
factorization vs. separate class hierarchies for gcd 
or factorization



Future work (cont.)

● using existing rich client platforms like Eclipse 
by MathEclipse

● using webservice and Cloud computing 
platforms, like Google App Engine by Symja

● use the scripting ability of Android to make 
computer algebra available on mobile phones

● define a common interface with Apache 
Commons Math and/or JLinAlg

● Maxima, Reduce could run on the JVM
● MathML/OpenMath easy to use in Java



Conclusions (1)

● can concentrate on mathematical aspects by 
– re-using software components

– Java and Scala language with JVM run-time  

– interactive scripting languages

● JVM infrastructure opens new ways of 
– interoperability of computer algebra systems on 

Java byte-code level

– gives also new opportunities to provide CAS
● on new computing devices 
● software as a service 
● distributed or cloud computing  



Conclusions (2) 

● CAS design and implementation by leveraging 
30 years of advances in computer science

● object oriented approach with the Java and 
Scala programming languages
– can implement non-trivial algebraic structures 

– in a type-safe way

– with competitive performance 

– can be stacked and plugged together in various 
ways



Thank you for your attention

Questions ?

Comments ?

http://jscl-meditor.sourceforge.net/

http://krum.rz.uni-mannheim.de/jas/
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