Operating two InfiniBand grid clusters over 28 km distance

Sabine Richling, Steffen Hau, Heinz Kredel, Hans-Günther Kruse

IT-Center University of Heidelberg, Germany IT-Center University of Mannheim, Germany

3PGCIC-2010, Fukuoka, 4. November 2010

Motivation

Circumstances in Baden-Württemberg (BW)

- Increasing demand for high-performance computing capacities from scientific communities
- Demands are not high enough to qualify for the top German HPC centers in Jülich, Munich and Stuttgart

 \Rightarrow Grid infrastructure concept for the Universities in Baden-Württemberg

Motivation

Special Circumstances in Heidelberg/Mannheim

- Both IT-centers have a long record of cooperations
- Both IT-centers are connected by a 10 Gbit dark fibre connection of 28 km (two color lines already used for backup and other services)
- $\Rightarrow\,$ Connection of the clusters in Heidelberg and Mannheim to ease operation and to enhance utilization

Outline

- 2 bwGRiD cooperation
- 3 Interconnection of two bwGRiD clusters
 - Cluster operation
- 5 Performance modeling
- 6 Summary and Conclusions

bwGRiD cooperation

-

D-Grid

- German Grid Initiative (www.d-grid.de)
- Start: September 2005
- Aim: Development and establishment of a reliable and sustainable Grid infrastructure for e-science in Germany
- Funded by the Federal Ministry of Education and Research (BMBF) with \sim 50 Million Euro

Bundesministerium für Bildung und Forschung

bwGRiD

- Community project of the Universities of BW (www.bw-grid.de)
- Compute clusters at 8 locations: Stuttgart, Ulm (Konstanz), Karlsruhe, Tübingen, Freiburg, Mannheim/Heidelberg, Esslingen
- Central storage unit in Karlsruhe
- Distributed system with local administration
- Access for all D-Grid virtual organizations via at least one middleware supported by D-Grid

bGRiD

bwGRiD - Objectives

- Verifying the functionality and the benefit of Grid concepts for the HPC community in BW
- Managing organisational and security problems
- Development of new cluster and Grid applications
- Solving license difficulties
- Enabling the computing centers to specialize

bGRiD

bwGRiD - Access Possibilities

Access with local university accounts (via ssh):

 \rightarrow Access to a local bwGRiD cluster only

Access with Grid Certificate and VO membership using a Grid middleware (e.g. Globus Toolkit: gsissh, GridFTP or Webservices): → Access to all bwGRiD resources

bwGRiD - Resources

Compute cluster:

- Mannheim/Heidelberg: 280 nodes Direct Interconnection
- Karlsruhe: 140 nodes
- Stuttgart: 420 nodes
- Tübingen: 140 nodes
- Ulm (Konstanz): 280 nodes Hardware in Ulm
- Freiburg: 140 nodes
- Esslingen: 180 nodes more recent Hardware

Central storage:

Karlsruhe:
 128 TB (with Backup)
 256 TB (without Backup)

0 / 41

bwGRiD - Software

• Common Software:

- Scientific Linux, Torque/Moab batch system, GNU and Intel compiler suite
- Central repository for software modules (MPI versions, mathematical libraries, various free software, application software from each bwGRiD site)
- Application areas of bwGRiD sites:
 - Freiburg: System Technology, Fluid Mechanics
 - Karlsruhe: Engineering, Compiler & Tools
 - Heidelberg: Mathematics, Neuroscience
 - Mannheim: Business Administration, Economics, Computer Algebra
 - Stuttgart: Automotive simulations, Particle simulations
 - Tübingen: Astrophysics, Bioinformatics
 - Ulm: Chemistry, Molecular Dynamics
 - Konstanz: Biochemistry, Theoretical Physics

Interconnection of two bwGRiD clusters

Hardware before Interconnection

- 10 Blade-Center in Heidelberg and 10 Blade-Center in Mannheim
- Each Blade-Center contains 14 IBM HS21 XM Blades
- Each Blade contains
 - 2 Intel Xeon CPUs, 2.8 GHz (each CPU with 4 Cores)
 - 16 GB Memory
 - 140 GB Hard Drive (since January 2009)
 - Gigabit-Ethernet (1 Gbit)
 - Infiniband Network (20 Gbit)
- $\bullet\,\Rightarrow\,1120$ Cores in Heidelberg and 1120 Cores in Mannheim

Hardware – Bladecenter

Hardware - Infiniband

Richling, Hau, Kredel, Kruse (URZ/RUM) Operating two grid clusters over 28 km

5 / 41

Interconnection of the bwGRiD clusters

- Proposal in 2008
- Acquisition and Assembly until May 2009
- Running since July 2009
- Infiniband over Ethernet over fibre optics: Longbow adaptor from Obsidian
 - InfiniBand connector (black cable)
 - fibre optic connector (yellow cable)

Interconnection of the bwGRiD clusters

• ADVA component: Transformation of white light from Longbow to one color light for the dark fibre connection between IT centers

Richling, Hau, Kredel, Kruse (URZ/RUM)

Operating two grid clusters over 28 km

MPI Performance – Prospects

- Measurements for different distances (HLRS, Stuttgart, Germany)
- Bandwidth 900-1000 MB/sec for up to 50-60 km
- Latency is not published

Measurement results - full InfiniBand throughput over more than 50km distance

Interconnection of two bwGRiD clusters

MPI Performance – Latency

Local: $\sim 2 \ \mu \text{sec}$ Interconnection: 145 μsec

Richling, Hau, Kredel, Kruse (URZ/RUM) Operating two grid clusters over 28 km Fukuoka, Novemb

Interconnection of two bwGRiD clusters

MPI Performance – Bandwidth

Local: 1400 MB/sec Interconnection: 930 MB/sec

Experiences with Interconnection Network

- Cable distance MA-HD is 28 km (18 km linear distance in air) \Rightarrow Light needs 143 μ sec for this distance
- Latency is high: 145 μ sec = Light transit time + 2 μ sec local latency
- Bandwidth is as expected: about 930 MB/sec Local bandwidth 1200-1400 MB/sec
- Obsidian needs a license for 40 km
 - Obsidian has buffers for larger distances
 - Activation of buffers with license
 - License for 10 km is not sufficient

MPI Bandwidth - Influence of the Obsidian License

IMB 3.2 - PingPong - buffer size 1 GB

Cluster operation

-

Cluster operation

bwGRiD Cluster Mannheim/Heidelberg

kuoka, November 2010

24 / 41

bwGRiD Cluster Mannheim/Heidelberg - Overview

- Two clusters (blue boxes) are connected by InfiniBand (orange lines)
- "Obsidian and ADVA" (orange box) represents the 28 km fibre connection
- bwGRiD storage systems (grey boxes) are also connected by Infiniband
- Access nodes ("Benutzer") are connected with 10 GBit (light orange lines) to the outside Internet "Belwue" (BW science net)
 - Access with local accounts from Mannheim ("LDAP")
 - Access with local accounts from Heidelberg ("AD")
 - Access with Grid certificates ("VORM")
- Ethernet connection between all components is not shown

Node Management

- Compute nodes are booted via PXE and use NFS read-only export as root file system
- Administration server provides
 - DHCP service for the nodes (MAC-to-IP address configuration file)
 - NFS export for root file system
 - NFS directory for software packages accessible via module utilities
 - queuing and scheduling system
- Node administration (power on/off, execute commands, BIOS update, etc.) with
 - adjusted shell scripts originally developed by HLRS
 - IBM management module (command line interface and Web-GUI)

User Management

- Users should have exclusive access to compute nodes
 - user names and user-ids must be unique
 - replacing passwd with reduced passwd proofed unreliable
 - better is a direct connection to PBS for user authorization via PAM module
- Authentication at the access nodes
 - $\bullet\,$ directly against directory services: LDAP (MA) and AD (HD)
 - or with D-Grid certificate
- Combining information from directory services from both universities
 - Prefix "ma", "hd" or "mh" for group names
 - Adding offsets to group-ids
 - Adding offsets to user-ids
 - Activated user names from MA and HD must be different
- Activation process
 - Adding a special attribute for the user in the directory service (for authentication)
 - Updating the user database of the cluster (for authorization)

7 / 41

Job Management

- Interconnection (high latency, limited bandwidth) provides
 - $\bullet\,$ enough bandwidth for I/O operations
 - not sufficient for all kinds of MPI jobs
- Jobs only run on nodes located either in HD or in MA (realized with attributes provides by the queuing system)
- Before interconnection
 - $\bullet\,$ In Mannheim: mostly single node jobs $\to\,$ free nodes
 - $\bullet~$ In Heidelberg: many MPI jobs $\rightarrow~$ long waiting times
- With interconnection better resource utilization (see Ganglia report)

Cluster operation

Monitoring Report during activation of the interconnection

Number of processes

Percent CPU Usage

Performance modeling

MPI Jobs running across the interconnection

- How does the interconnection influence the performance?
- How much bandwidth would be necessary to the improve the performance?
- How much would such an upgrade cost?

Performance modeling

- Numerical model
 - High-Performance Linpack (HPL) benchmark
 - OpenMPI
 - Intel MKL
- Model variants
 - Calculations on a single cluster with up to 1025 CPU cores
 - Calculations on the coupled cluster with up to 2048 CPU cores symmetrically distributed
- Analytical model for the speed-up to analyze the characteristics of the interconnection
 - high latency of 145 $\mu {\rm sec}$
 - $\bullet\,$ limited bandwidth of 930 MB/sec

Results for a single cluster

3 / 41

Results for coupled cluster

Richling, Hau, Kredel, Kruse (URZ/RUM) Operating two grid clusters over 28 km Fukuoka, November

34 / 4

Direct comparison of the two cases

speed-up

HPL 1.0a

 n_p load parameter (matrix size for HPL)

for p < 50speed-up for coupled cluster is acceptable, applications could run across interconnection effectively (in the case of exclusive usage)

Performance modeling

Following a performance model developed by Kruse (2009): $t_c(p)$: communication time

 $t_{
m B}(1)$: processing time for p=1

$$\mathsf{S}_{\mathrm{c}}(p) \leq rac{p}{\ln p + rac{t_{\mathrm{c}}(p)}{t_{\mathrm{B}}(1)}}$$

For $t_c(p) = 0$, we receive the result of the simple model:

$$S_{
m simple}(p) = p/\ln p$$

Richling, Hau, Kredel, Kruse (URZ/RUM) Operating two grid clusters over 28 km Fukuoka, November 2010

Performance model for the high latency

Modeling $t_c(p)$ as a function of the typical communication time between 2 processes $t_c^{(2)}$ an the communication topology c(p):

 $t_{\rm c}(p)=t_c^{(2)}c(p)$

Defining a rate $r = t_c^{(2)}/t_A$ between $t_c^{(2)}$ and the computation time for a typical instruction $t_A = t_B(1)/n$:

Speed-up

$$S_{\mathrm{c}}(p) \leq rac{p}{\ln p + rac{r}{n}c(p)}$$

Analysis for HPL $(n = \frac{2}{3}n_p^3)$:

- for $n_p = 1000$: $\sim p/\ln p$ for small p, decrease for $p \ge 30$
- for $n_p = 10\ 000$: $\sim p/\ln p$ for $p \le 10\ 000$, decrease for $c(p) > 10^6$

Analysis does not explain the numerical results. Decrease of speed-up already for smaller p.

イロト イポト イヨト イヨト

3

Performance modeling

Performance model including a limited bandwidth

Modeling the interconnection as a shared medium for the communication of p processes with a given bandwidth B and average message length $\langle m \rangle$:

$$\sum_{c}^{(2)} = t_{\rm L} + \frac{\langle m \rangle}{\langle B/\rho \rangle}$$

 $r(p) = \frac{t_{\rm L}}{t_{\rm A}} + \frac{\langle m \rangle}{t_{\rm A}B}p$
With the measured bandwidth $B = 1.5 \cdot 10^6$ and $\langle m \rangle = 10^6$:

With assumption $c(p) = \frac{1}{2}p^2$:

• for
$$n_p = 10\ 000$$
: $\sim p/\ln p$, decrease for $p \geq 50$

• for $n_p =$ 40 000: $\sim p/\ln p$, decrease for $p \ge 250$

Speed-up reproduces the measurements.

Performance modeling

Speed-up of the model including limited bandwidth

n_p load parameter (matrix size for HPL)

 \Rightarrow limited bandwidth is the performance bottleneck for shared connection between the clusters

 \Rightarrow Doubling the bandwidth: 25 % improvement for $n_p = 40\ 000$

 \Rightarrow 100 % improvement with a ten-fold bandwidth (in the case of exclusive usage)

9 / 41

Summary and Conclusions

Richling, Hau, Kredel, Kruse (URZ/RUM) Operating two grid clusters over 28 km Fukuoka, November 2010 40 / 4

InfiniBand connection of two compute clusters

- Network (Obsidian, ADVA and Infiniband switches) is stable and reliable
- Latency of 145 μ sec is very high
- $\bullet\,$ Bandwidth of 930 MB/sec is as expected
- Jobs are limited to one site, because MPI jobs would be slow (Interconnection is a "shared medium")
- Performance model predicts the cost for an improvement of the interconnection
- Bandwidth sufficient for cluster administration and file I/O on Lustre file systems
- Interconnection is useful and stable for a "Single System Cluster" administration
- Better load balance at both sites due to common PBS
- Solving organizational issues between two universities is a great challenge