
The Design of the IPACS Distributed Software Architecture

 Heinz Kredel Matthias Merz
 University of Mannheim University of Mannheim
 IT Center, L 15,16 IT Center, L 15,16
 68131 Mannheim, Germany 68131 Mannheim, Germany
 kredel@rz.uni-mannheim.de merz@rz.uni-mannheim.de

Abstract

The IPACS-project (Integrated Performance Analysis of Computer Systems) was founded by
the Federal Department of Education, Science, Research and Technology (BMBF) in the pro-
gram High-Performance-Computing to define a new standard for measuring system perform-
ance. One part of this research project is the design of a distributed architecture for execution
of benchmarks on High Performance Computers. Its objective is to guide benchmarkers along
a mostly automated benchmarking process cycle in compiling and executing benchmarks, and
finally gathering and presenting the measured results on a central website. In this paper we
present a distributed software architecture which allows immediate analysis of the results, is
robust and flexible to support this benchmarking process for the benchmark community.

1. Introduction

The analysis of the performance of computer systems and applications has lead to a vast
number of benchmark programs and suites. Among these the TOP500 ([17]) list, based on the
Linpack benchmark is the most public visible benchmark in the world. Its success comes first
from the scalability of the Linpack benchmark over all computer architectures over the last 25
years, second from the open availability of the source and supporting code together with the
community validation of the results and third from the interest of computer manufacturers to
publish the best Linpack numbers for their systems as a competitive comparison. For custom-
ers the Linpack numbers are a prime corrective to the peek advertised performance (PAP) of
computer systems, since a real benchmark program must be executed on a existing computer
in order to obtain the performance numbers.

Many other benchmark initiatives fail short on some aspects: the benchmarks are only mean-
ingful for certain architectures, hardware features or certain system sizes (e.g. NAS PB [11]),
to obtain and publish the benchmark one must be a member of an organization and follow
certain procedures (e.g. TPC [18], SPEC [16]) or there is only an academic interest in the re-
sults of a benchmark (see the Netlib link collection [3]).

However, its success is due to a limitation of the Linpack benchmark, is assesses the suitabil-
ity of a computer system only by computing a solution to a dense and arbitrarily big system of
linear equations. But many of today’s applications incorporate new algorithms with different
system stress patterns or algorithms based on new mathematical theories. On the practical side
it is relatively easy to run the Linpack with reasonable results by a benchmark professional
but for most new or young benchmarkers it is very hard to tune and optimize the Linpack
software configuration to achieve good results.

The IPACS-project ([6]) wants to improve this situation by augmenting Linpack with a set of
low level and application benchmarks and in easing the execution of these benchmarks. The
evaluation and selection or the development of augmenting benchmarks is part of other
IPACS publications, in this paper we focus on the development of an distributed and easier to
use benchmark environment.

1.1 Related Work

Other benchmarking activities do not aim at such an highly automated process cycle. There is
one project 'Repository in a Box' (RIB, [15]) which is a software package for creating web
metadata repositories which can contain metadata for benchmark suites for various applica-
tion domains. This tool helps finding benchmarks or other software in a specific application
domain that does not contain the benchmark code or benchmark results.

The Performance Database Server ([12]) is a web-server which contains results of various
benchmarks from Dhrystone to Linpack. The results from Linpack are mostly up to date, but
other tables contain merely historical data. Data input seems to be sent via email to the main-
tainers. The goal of the Performance Evaluation Research Center ([13]) is a scientific under-
standing and improvement of the performance of HPC systems. Although they develop
benchmarks and performance models for predictions (just as IPACS) it seems not to be in-
tended to facilitate the benchmarking and publishing process. The HPC Challenge ([4]) with
PaMaC project ([14]) also aim at a suitable benchmark suite which can complement the Lin-
pack/TOP500 benchmark. The proposed benchmarks are primarily based on Linpack and its
software infrastructure. The web-site contains an archive of benchmark results and provides a
web-form to be filled out and submitted together with the benchmark result file. User valida-
tion is via email response with an activating URL.

So the IPACS concept of integrating a benchmark code repository, a benchmark result reposi-
tory and automated process cycle contributes new ideas and experiences in benchmarking.

1.2 Outline of the paper

The remainder of this paper is organized as follows: Section 2 recalls the traditional process
of benchmarking and highlights the improvements of the automated IPACS benchmark cycle.
Section 3 introduces the distributed software architecture with its main components: bench-
mark client, repository server and web-presentation. Section 4 concludes this paper.

2. Process of Benchmarking

The process of benchmarking High Performance Computers is quite complex and assumes
fundamental benchmarking experience, in particular by configuring and compiling benchmark
sources with approved compiler flags and proper operating system settings. The IPACS
benchmark environment should guide the (novel) benchmarkers in the selection and deploy-
ment of the benchmarks, guide the execution and tuning of a benchmark and automatically
collect the results, publish them and presenting them for comparison with other computer sys-
tems and benchmark runs.

Let us first recall the well-known Linpack process cycle (fig. 1): a person selects the Linpack
source code from Netlib web-site, the Linpack is transferred to the target computer system,
compiled, tuned and run, finally the results are pasted into a web-form at TOP500 or send by
email to Jack Dongarra (the developer and maintainer of the benchmark). If the results are
meaningful or bad can be seen by feedback from the TOP500 team or the bi-yearly published
and moderated result lists on www.top500.org.

IPACS aims at an automated process cycle (fig. 2): a person connects with the IPACS client
to the IPACS repository server, the client guides the person in the determination of basic facts
about the High Performance Computer, based on this information a suitable benchmark is
downloaded. The IPACS client guides the person in the compilation, tuning and running of
the selected benchmark, once results from a benchmark are available, they are transmitted as
XML forms setup by the IPACS client and stored in the repository database. The client then

guides the browsing of the repository contents with the new results.

3. Software Architecture

As discussed in the previous sections the IPACS Distributed Software Architecture includes
three primary elements as illustrated in fig. 3: benchmark client, repository server and web-
presentation. The objectives to be met by each of these components are outlined below:

3.1 Benchmark Client

The benchmark client mediates as graphical user interface between benchmarker and reposi-
tory server. Starting the client for the first time on a High Performance Computer, the client is
registering itself at the repository server. Afterwards the client tries to detect the current hard-
and software environment partly by asking the benchmarker for further information. To avoid
redundant data the client does not store any information locally, with the exception of a sim-
ple identification number. Thus, every information about the hard- and software environment,
the measured results and further information entered by a benchmarker are directly stored at
the repository servers database, which leads to another advantage: the repository server - and
with it also the web-presentation - has always the most up-to-date information.

In cooperation with the repository server and independent of the current hard- and software
environment, the client suggests the execution of useful benchmarks according to the IPACS
benchmark methodology. By starting the execution of a suggested benchmark the client
automatically downloads either a pre-compiled benchmark for the current operating system if
available or an existing benchmark source code. After the execution of the benchmark the
client imports the measured results and transmits them to the repository server.

To cope with different hardware and operating systems, the benchmark client was completely
developed in the object-oriented portable programming language Java. The client uses the
standard HTTP-protocol with XML messages to communicate with the repository server.
Other message oriented middleware such as CORBA (Common Object Request Broker Ar-
chitecture) or RMI (Remote Method Invocation) have been considered in the design phase.
Although these are much higher-level standards and provide easier programming APIs they
require a sophisticated infrastructure and are therefore more difficult to deploy in an unknown
environment. So CORBA requires a setup of an ORB (object request broker) and accompany-
ing services together with the installation and configuration of the respective classes which

Figure 2: IPACS Process Cycle Figure 1: Linpack Benchmarking Process

High
Performance
Computer

Repository-
Server

Benchmark-
Client

Database

Web-
Presentation

Internet

makes the deployment of the client much
more complicated. Basically RMI has the
same disadvantages as also services on
certain ports must be provided. Despite of
these problems and since also the CORBA
Firewall Traversal Specification was not
settled during our design phase, we decided
to stick to the more robust and ubiquitous
HTTP-protocol on port 80. Thus our
concept avoids problems with the
infrastructure, especially with firewalls of
HPC centers.

Up to now all IPACS benchmark suites
produce only ASCII text files as output.
The relevant information in these files is
identified and parsed to be structured for

further processing. Together with the benchmark developers we designed a global XML-
structure (DTD) to describe a common XML-output for all involved benchmarks. As a result
the benchmark client has only to transmit these XML-files via HTTP to the repository server
without additional data-interpretation and on the other side the repository server is always
able to deal with the received information. Compared to other solutions, e.g. serialized objects
instead of XML-messages or well-known web-services our approach leads to an further ad-
vantage: In the rather unlikely case of firewall-problems with port 80, the XML-files could
also be transmitted with other services e.g. ftp or email.

3.2 Repository Server

While the benchmark client was designed as a lightweight approach without extensive intelli-
gence, the main work is done on the repository server. Once a new client is registered, the
repository server requests information about the current hard- and software environment.
Based on the received facts and probably already stored information the repository server de-
termines useful benchmarks for execution on the High Performance Computer. It has to deal
with information about available benchmarks, current versions and their location at the
IPACS web-server. After benchmark execution it has to collect the measurement results and
to prepare the data for the web-presentation. One fact to keep in mind is that measurement
results are only meaningful even they are presented together with the current hard- and soft-
ware configuration.

To realize our distributed client-server environment, several different scenarios are possible.
Our first solution was based one the widespread Enterprise Java-Beans (EJB) component
model [10] as part of the J2EE platform [9]. But due to financial limitations and the flaws of
the available open source J2EE implementations (e.g. memory leak in JBoss 2.x) when our
project started, we decided to realize our implementation based on Apache’s open-source
servlet-container Tomcat [2]. Afterwards we discussed possible persistence solutions for our
backend. Our first model was based on an object-oriented database, because object-oriented
databases appear to be the conceptually most appealing kind of data store. But due to the need
of the web-presentation we decided to use a relational database even though this lead to the
so-called impedance mismatch between the object-oriented and component-based business
logic in the application layer. At first glance the new Java Data Objects (JDO) standard [8]
might well be a considerable solution as the persistence layer of choice. But whereas in none-
managed environments are at least a few open source implementations available (with all kind

Figure 3: IPACS Architecture

of restrictions and limited functionality), currently only expensive commercial JDO-
implementations are existing with the use in managed environments.

Mapping benchmark results and computer information from the communicated XML files to
fixed relational tables with hardcoded SQL/JDBC (Structured Query Language/) leads to a
disadvantage regarding flexibility. Even the use of available O/R mapping tools often locks
the developer into a particular vendor and leads to a restriction in application portability.
Therefore we developed a suitable persistence layer for the special requirements in bench-
marking. Based on a XML-mapping file our approach allows to change the information struc-
ture in our database tables and relations without code-modifications to the repository server.
This ensures an easy adaptability of all components to future requirements.

3.3 Web-Presentation

Once the benchmarks are executed and the output files are available one would like to com-
pare the performance results to other results in the repository. The comparison will reveal
deficits in the software tuning of the benchmark with respect to similar architectures and
problems of the hardware of new computers if no improvements can be seen. So facilitating
easy comparisons is a mayor goal of IPACS. There are at least three software designs to meet
these goals: first we could augment the client with sufficient capabilities to present the com-
parison data, second we could augment the server with the public Web-publishing functional-
ity to present the data and third we could add some private Web-publishing functionality on
the server.

The first design would give the benchmarkers private and immediate comparison data, how-
ever it would mean that the client software must be considerably more complex and would
need longer development and testing time. So we decided to implement all comparison func-
tionalities only on the Web-server, where it must be implemented anyway. With private com-
parison the benchmarker could compare their results with the data contained in the repository
before making their results public available. The private comparison could be interesting in
cases a benchmark is not yet tuned sufficiently or a new hardware is benchmarked which is
not yet disclosed or finally optimized for performance. On the other hand the immediate pub-
lic availability of the results can be inspiring and motivating for other benchmarkers. Immedi-
ate publishing was also used with the online Java Linpack benchmark [7] which was widely
accepted. The implementation of a private comparison capability would require some session
tracking and per session views on the repository database. So for the software architecture we
decided to keep the design simple in the first place and not to implement the private compari-
son functionality. From the maintainers point of view the private comparison seems also unat-
tractive, as we could end up with a repository containing thousands of results but only a small
number that is publicly visible. This would considerably lower the value of the IPACS ser-
vices to the community.

For the software to realize the Web-service we stick to the proven robust combination of the
Apache HTTP-Server with PHP scripts to access the MySQL database of the repository. The
presentation of the benchmark results is straight forward. Every benchmark has three levels of
details: a single number which presents the most condensed result (as the Rmax of Linpack), a
set of (three) numbers which give more insight into the performance characteristics (e.g. Nmax,
N1/2 in Linpack) and finally the textual output of the benchmark run. The results are first pre-
sented in the most condensed form together with the main hardware and software characteris-
tics and a visitor can then click on appropriate buttons or links to uncover more and more de-
tails. This approach is also used on other benchmarking activities, e.g. by the web-
presentation of the SPEC benchmarks.

A final point in the presentation of the results to consider is the order in which the computer
systems are listed. For Linpack/TOP500 the computers are easily ordered with respect to their
Rmax value. But for IPACS with more than six different benchmarks it is not possible to find a
meaningful way to order the systems. The IDC HPC [5] tries to define a rank based on a
(equal) weighting scheme of the different benchmarks to construct a single number for order-
ing. However there has been disagreement about this scheme in the scientific benchmark
community [1] as a weight between different performance numbers depends on particular
application characteristics. Each visitor has its own applications which imply different impor-
tance (or weights) between the numbers of different benchmarks. Therefore IPACS will not
imply any ordering on the overview results but will provide visitors with the option of selec-
tion of own ordering schemes for assessment.

4. Conclusion

With the IPACS software environment we presented a new step in the support of an easy and
efficient benchmarking cycle. The proposed software architecture is robust and simple to be
deployed in a wide variety of heterogeneous client environments. The database design is
elaborate enough to start with the benchmarking but is also flexible in design to be easily
adaptable to future requirements. The presentation of the benchmark results is designed to be
most useful for the benchmark community. All results are immediately transferred to the web
site via the repository server to make them available for comparison and analysis with other
results.

We thankfully acknowledge the fruitful discussions with our colleagues from the IPACS pro-
ject and others. In particular thanks to F.J. Pfreund for the project initiative, to M. Meuer for
the IPACS web presentation, to H. Bockhorst, A. Geiger, D. Merten, E. Strohmaier, C.
Simmendinger, D. Waschk for clarifying the requirements of the benchmark process. We also
thank our colleagues from the IT Center and the department Information Systems of the Uni-
versity of Mannheim for their continued support of the project.

References

[1] Aad van der Steen (2002), How informative is the IDC Balanced Rating HPC Benchmark?
 http://www.hoise.com/primeur/02/articles/weekly/AE-PR-03-02-60.html
[2] Apache Software Foundation: The Jakarta Project – Tomcat, http://jakarta.apache.org/tomcat/index.html
[3] High Performance Linpack (HPL) at Netlib: URL: http://www.netlib.org/benchmark/hpl/
[4] HPC Challenge: URL: http://icl.cs.utk.edu/hpcc/
[5] IDC market research: URL: http://63.143.40.111/benchmark/
[6] IPACS Project: URL: http://www.ipacs-benchmark.org/
[7] Java Linpack: URL: http://www.netlib.org/benchmark/linpackjava/
[8] Java Community Process (2003): JSR-000012 Java Data Objects Specification 1.0.1
[9] Sun Microsystems (2003): Java 2 Platform Enterprise Edition 1.4., http://java.sun.com/j2ee/
[10] Sun Microsystems (2002): Enterprise JavaBeans Specification 2.1, http://java.sun.com/products/ejb/
[11] NAS Parallel Benchmark: URL: http://www.nas.nasa.gov/
[12] Performance Database Server: URL: http://performance.netlib.org/performance/html/PDStop.html
[13] Performance Evaluation Research Center (PERC): URL: http://perc.nersc.gov/main.htm
[14] Performance Modeling and Characterization (PaMaC): URL : http://www.sdsc.edu/PMaC/Benchmark/
[15] Repository in a Box (RIB): URL: http://icl.cs.utk.edu/rib/
[16] Standard Performance Evaluation Corporation (SPEC): URL: http://www.specbench.org/
[17] TOP500 Supercomputer Sites: URL: http://www.top500.org/
[18] Transaction Processing Council (TPC): URL: http://www.tpc.org/

